Overreactivity and defensive behaviors in response to tactile stimuli are common symptoms in autism spectrum disorder (ASD) patients. Similarly, somatosensory hypersensitivity has also been described in mice lacking ASD-associated genes such as Fmr1 (fragile X mental retardation protein 1). Fmr1 knock-out mice also show reduced functional connectivity between sensory cortical areas, which may represent an endogenous biomarker for their hypersensitivity. Here, we measured whole-brain functional connectivity in Engrailed-2 knock-out (En2 -/- ) adult mice, which show a lower expression of Fmr1 and anatomical defects common to Fmr1 knock-outs. MRI-based resting-state functional connectivity in adult En2 -/- mice revealed significantly reduced synchronization in somatosensory-auditory/associative cortices and dorsal thalamus, suggesting the presence of aberrant somatosensory processing in these mutants. Accordingly, when tested in the whisker nuisance test, En2 -/- but not WT mice of both sexes showed fear behavior in response to repeated whisker stimulation. En2 -/- mice undergoing this test exhibited decreased c-Fos-positive neurons (a marker of neuronal activity) in layer IV of the primary somatosensory cortex and increased immunoreactive cells in the basolateral amygdala compared with WT littermates. Conversely, when tested in a sensory maze, En2 -/- and WT mice spent a comparable time in whisker-guided exploration, indicating that whisker-mediated behaviors are otherwise preserved in En2 mutants. Therefore, fearful responses to somatosensory stimuli in En2 -/- mice are accompanied by reduced basal connectivity of sensory regions, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala, suggesting that impaired somatosensory processing is a common feature in mice lacking ASD-related genes

Aberrant somatosensory processing and connectivity in mice lacking engrailed-2

Casarosa S;Bozzi Y
2019

Abstract

Overreactivity and defensive behaviors in response to tactile stimuli are common symptoms in autism spectrum disorder (ASD) patients. Similarly, somatosensory hypersensitivity has also been described in mice lacking ASD-associated genes such as Fmr1 (fragile X mental retardation protein 1). Fmr1 knock-out mice also show reduced functional connectivity between sensory cortical areas, which may represent an endogenous biomarker for their hypersensitivity. Here, we measured whole-brain functional connectivity in Engrailed-2 knock-out (En2 -/- ) adult mice, which show a lower expression of Fmr1 and anatomical defects common to Fmr1 knock-outs. MRI-based resting-state functional connectivity in adult En2 -/- mice revealed significantly reduced synchronization in somatosensory-auditory/associative cortices and dorsal thalamus, suggesting the presence of aberrant somatosensory processing in these mutants. Accordingly, when tested in the whisker nuisance test, En2 -/- but not WT mice of both sexes showed fear behavior in response to repeated whisker stimulation. En2 -/- mice undergoing this test exhibited decreased c-Fos-positive neurons (a marker of neuronal activity) in layer IV of the primary somatosensory cortex and increased immunoreactive cells in the basolateral amygdala compared with WT littermates. Conversely, when tested in a sensory maze, En2 -/- and WT mice spent a comparable time in whisker-guided exploration, indicating that whisker-mediated behaviors are otherwise preserved in En2 mutants. Therefore, fearful responses to somatosensory stimuli in En2 -/- mice are accompanied by reduced basal connectivity of sensory regions, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala, suggesting that impaired somatosensory processing is a common feature in mice lacking ASD-related genes
2019
Istituto di Neuroscienze - IN -
Autism
Behavior
C-Fos
Cortex
Imaging
Somatosensory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/369793
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact