In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form (-?)^pu = f , p >= 1. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in suitable norms.
The conforming virtual element method for polyharmonic problems
G Manzini;M Verani
2020
Abstract
In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form (-?)^pu = f , p >= 1. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in suitable norms.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_415407-doc_146262.pdf
accesso aperto
Descrizione: The conforming virtual element method for polyharmonic problems
Tipologia:
Versione Editoriale (PDF)
Dimensione
452.86 kB
Formato
Adobe PDF
|
452.86 kB | Adobe PDF | Visualizza/Apri |
prod_415407-doc_151730.pdf
non disponibili
Descrizione: The conforming virtual element method for polyharmonic problems
Tipologia:
Versione Editoriale (PDF)
Dimensione
445.88 kB
Formato
Adobe PDF
|
445.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.