In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form (-?)^pu = f , p >= 1. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in suitable norms.

The conforming virtual element method for polyharmonic problems

G Manzini;M Verani
2020

Abstract

In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form (-?)^pu = f , p >= 1. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in suitable norms.
2020
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Virtual Element method; Polytopal mesh; Polyharmonic problem; High-order methods
File in questo prodotto:
File Dimensione Formato  
prod_415407-doc_146262.pdf

accesso aperto

Descrizione: The conforming virtual element method for polyharmonic problems
Tipologia: Versione Editoriale (PDF)
Dimensione 452.86 kB
Formato Adobe PDF
452.86 kB Adobe PDF Visualizza/Apri
prod_415407-doc_151730.pdf

non disponibili

Descrizione: The conforming virtual element method for polyharmonic problems
Tipologia: Versione Editoriale (PDF)
Dimensione 445.88 kB
Formato Adobe PDF
445.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/369821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact