The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of nontrivial topological states even in zero-dimensional systems, i.e., systems with a discrete energy spectrum. Here, we show that a quantum dot coupled with two superconducting leads can realize a nontrivial zero-dimensional topological superconductor with broken time-reversal symmetry, which corresponds to the finite size limit of the one-dimensional topological superconductor. Topological phase transitions corresponds to a change of the fermion parity, and to the presence of zero-energy modes and discontinuities in the current-phase relation at zero temperature. These fermion parity transitions therefore can be revealed by the current discontinuities or by a measure of the critical current at low temperatures.

A zero-dimensional topologically nontrivial state in a superconducting quantum dot

Braggio A;Citro R
2018

Abstract

The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of nontrivial topological states even in zero-dimensional systems, i.e., systems with a discrete energy spectrum. Here, we show that a quantum dot coupled with two superconducting leads can realize a nontrivial zero-dimensional topological superconductor with broken time-reversal symmetry, which corresponds to the finite size limit of the one-dimensional topological superconductor. Topological phase transitions corresponds to a change of the fermion parity, and to the presence of zero-energy modes and discontinuities in the current-phase relation at zero temperature. These fermion parity transitions therefore can be revealed by the current discontinuities or by a measure of the critical current at low temperatures.
2018
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Nanoscienze - NANO
Josephson effect
Josephson junctions
Quantum dots
Superconducting quantum dots
Topological states
Topological superconductors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact