Drugs such as oral contraceptives and hormone replacement therapies are known to find their way into rivers, lakes and seas, and have the potential to affect reproduction and development of the wildlife. The knowledge of the reproductive mechanisms and their regulation in aquatic species is of fundamental importance for predicting and preventing the damage by the increasing release of such chemicals in the environment. Mifepristone, a synthetic steroid used as a drug for chemical abortion, works by blocking the effects of progesterone. Its presence in fresh and salt water has been reported, representing a danger for aquatic species. In this frame, we evaluated in both acute and chronic exposures, the effects of mifepristone on the reproductive performance of the sea urchin P. lividus. In both acute and chronic exposures, mifepristone did not affect the histological structure of the gonads. However, mifepristone administered to females caused the decrease of the percentage of normal developed plutei larvae compared with the control, whereas it did not alter sperm motility parameters and fertilization success in males. The immunohistological localization of progesterone receptor-like immunoreactivity on the plasma membrane of oocytes and ova and the molecular weight of a progesterone receptor-like immunoband identified by western blotting, are in agreement with a membrane progesterone receptor deducted from the genome sequence of the sea urchin Strongylocentrotus purpuratus and suggest that in P. lividus mifepristone actions may be mediated by a progesterone receptor.

Mifepristone affects fertility and development in the sea urchin Paracentrotus lividus

Fabbrocini A;D'Adamo R;
2019

Abstract

Drugs such as oral contraceptives and hormone replacement therapies are known to find their way into rivers, lakes and seas, and have the potential to affect reproduction and development of the wildlife. The knowledge of the reproductive mechanisms and their regulation in aquatic species is of fundamental importance for predicting and preventing the damage by the increasing release of such chemicals in the environment. Mifepristone, a synthetic steroid used as a drug for chemical abortion, works by blocking the effects of progesterone. Its presence in fresh and salt water has been reported, representing a danger for aquatic species. In this frame, we evaluated in both acute and chronic exposures, the effects of mifepristone on the reproductive performance of the sea urchin P. lividus. In both acute and chronic exposures, mifepristone did not affect the histological structure of the gonads. However, mifepristone administered to females caused the decrease of the percentage of normal developed plutei larvae compared with the control, whereas it did not alter sperm motility parameters and fertilization success in males. The immunohistological localization of progesterone receptor-like immunoreactivity on the plasma membrane of oocytes and ova and the molecular weight of a progesterone receptor-like immunoband identified by western blotting, are in agreement with a membrane progesterone receptor deducted from the genome sequence of the sea urchin Strongylocentrotus purpuratus and suggest that in P. lividus mifepristone actions may be mediated by a progesterone receptor.
2019
Istituto di Scienze dell'Alimentazione - ISA
Istituto di Scienze Marine - ISMAR
embryo development; mifepristone; P; lividus; reproduction; sperm motility
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact