In this work we produced a long-term reanalysis of the phytoplankton community structure in the Mediterranean Sea and used it to define ecoregions. These were based on the spatial variability of the phytoplankton type fractions and their influence on selected carbon fluxes. A regional ocean color product of four phytoplankton functional types (PFTs; diatoms, dinoflagellates, nanophytoplankton, and picophytoplankton) was assimilated into a coupled physical-biogeochemical model of the Mediterranean Sea (Proudman Oceanographic Laboratory Coastal Ocean Modelling System-European Regional Seas Ecosystem Model, POLCOMS-ERSEM) by using a 100-member ensemble Kalman filter, in a reanalysis simulation for years 1998-2014. The reanalysis outperformed the reference simulation in representing the assimilated ocean color PFT fractions to total chlorophyll, although the skill for the ocean color PFT concentrations was not improved significantly. The reanalysis did not impact noticeably the reference simulation of not assimilated in situ observations, with the exception of a slight bias reduction for the situ PFT concentrations, and a deterioration of the phosphate simulation. We found that the Mediterranean Sea can be subdivided in three PFT-based ecoregions, derived from the spatial variability of the PFT fraction dominance or relevance. Picophytoplankton dominates the largest part of open ocean waters; microphytoplankton dominates in a few, highly productive coastal spots near large-river mouths; nanophytoplankton is relevant in intermediate-productive coastal and Atlantic-influenced waters. The trophic and carbon sedimentation efficiencies are highest in the microphytoplankton ecoregion and lowest in the picophytoplankton and nanophytoplankton ecoregions. The reanalysis and regionalization offer new perspectives on the variability of the structure and functioning of the phytoplankton community and related biogeochemical fluxes, with foreseeable applications in Blue Growth of the Mediterranean Sea.

Ecoregions in the Mediterranean Sea Through the Reanalysis of Phytoplankton Functional Types and Carbon Fluxes

Di Cicco A;Sammartino M;Santoleri R;
2019

Abstract

In this work we produced a long-term reanalysis of the phytoplankton community structure in the Mediterranean Sea and used it to define ecoregions. These were based on the spatial variability of the phytoplankton type fractions and their influence on selected carbon fluxes. A regional ocean color product of four phytoplankton functional types (PFTs; diatoms, dinoflagellates, nanophytoplankton, and picophytoplankton) was assimilated into a coupled physical-biogeochemical model of the Mediterranean Sea (Proudman Oceanographic Laboratory Coastal Ocean Modelling System-European Regional Seas Ecosystem Model, POLCOMS-ERSEM) by using a 100-member ensemble Kalman filter, in a reanalysis simulation for years 1998-2014. The reanalysis outperformed the reference simulation in representing the assimilated ocean color PFT fractions to total chlorophyll, although the skill for the ocean color PFT concentrations was not improved significantly. The reanalysis did not impact noticeably the reference simulation of not assimilated in situ observations, with the exception of a slight bias reduction for the situ PFT concentrations, and a deterioration of the phosphate simulation. We found that the Mediterranean Sea can be subdivided in three PFT-based ecoregions, derived from the spatial variability of the PFT fraction dominance or relevance. Picophytoplankton dominates the largest part of open ocean waters; microphytoplankton dominates in a few, highly productive coastal spots near large-river mouths; nanophytoplankton is relevant in intermediate-productive coastal and Atlantic-influenced waters. The trophic and carbon sedimentation efficiencies are highest in the microphytoplankton ecoregion and lowest in the picophytoplankton and nanophytoplankton ecoregions. The reanalysis and regionalization offer new perspectives on the variability of the structure and functioning of the phytoplankton community and related biogeochemical fluxes, with foreseeable applications in Blue Growth of the Mediterranean Sea.
2019
Istituto di Scienze Marine - ISMAR
Mediterra
File in questo prodotto:
File Dimensione Formato  
prod_416000-doc_173220.pdf

accesso aperto

Descrizione: Ecoregions in the Mediterranean Sea
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 34.68 MB
Formato Adobe PDF
34.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/370552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact