Vanadium-doped TiO2 nanoparticles (V-TiO2 NPs) with a V/Ti ratio of 3.0 at. % were prepared by gas-phase condensation and subsequent oxidation at elevated temperature. Both photocatalytic activity for -NO2 reduction and photoelectrochemical water splitting were induced by V-doping in the visible spectral range lambda > 450 nm, where undoped TiO2 NPs are completely inactive. The photocatalytic properties were correlated with the ultrafast dynamics of the photoexcited charge carriers studied by femtosecond transient absorption (TA) spectroscopy with three different excitation wavelengths, i.e. lambda(e) = 330, 400, and 530 nm. Only in V-doped NPs, the photoexcitation of electrons into the conduction band by sub-bandgap irradiation (lambda(e) = 530 nm) was detected by TA spectroscopy. This observation was associated with electronic transitions from an infra-gap level localized on V4+ cations. The photoexcited electrons subsequently relaxed, with characteristic times of 200-500 ps depending on lambda(e), into Ti-related surface traps that possessed suitable energy to promote -NO2 reduction. The photoexcited holes migrated to long-lived surface traps with sufficient overpotential for the oxidization of both 2-propanol and water. On the basis of TA spectroscopy and photocurrent measurements, the position of the dopant-induced infra-gap level was estimated as 2.2 eV below the conduction band minimum.

Charge carrier dynamics and visible light photocatalysis in vanadium-doped TiO2 nanoparticles

Catone Daniele;Paladini Alessandra;O'Keeffe Patrick;Boscherini Federico
2018

Abstract

Vanadium-doped TiO2 nanoparticles (V-TiO2 NPs) with a V/Ti ratio of 3.0 at. % were prepared by gas-phase condensation and subsequent oxidation at elevated temperature. Both photocatalytic activity for -NO2 reduction and photoelectrochemical water splitting were induced by V-doping in the visible spectral range lambda > 450 nm, where undoped TiO2 NPs are completely inactive. The photocatalytic properties were correlated with the ultrafast dynamics of the photoexcited charge carriers studied by femtosecond transient absorption (TA) spectroscopy with three different excitation wavelengths, i.e. lambda(e) = 330, 400, and 530 nm. Only in V-doped NPs, the photoexcitation of electrons into the conduction band by sub-bandgap irradiation (lambda(e) = 530 nm) was detected by TA spectroscopy. This observation was associated with electronic transitions from an infra-gap level localized on V4+ cations. The photoexcited electrons subsequently relaxed, with characteristic times of 200-500 ps depending on lambda(e), into Ti-related surface traps that possessed suitable energy to promote -NO2 reduction. The photoexcited holes migrated to long-lived surface traps with sufficient overpotential for the oxidization of both 2-propanol and water. On the basis of TA spectroscopy and photocurrent measurements, the position of the dopant-induced infra-gap level was estimated as 2.2 eV below the conduction band minimum.
2018
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto Officina dei Materiali - IOM -
Photocatalysis
TiO2
Transient absorption spectroscopy
NO2 reduction
Vanadium doping
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact