Multiple sclerosis (MS) course variability is guided by chronic inflammation, neuroaxonaldegeneration and remyelination. However, it is not clear how these phenomena interact with eachother and change over the disease course, making clinical outcome and response to treatment hardto predict.

Evaluation of 5-year disease progression in multiple sclerosis via magnetic-resonance-based deep learning techniques

Taloni, A.;Farrelly, F. A.;
2019

Abstract

Multiple sclerosis (MS) course variability is guided by chronic inflammation, neuroaxonaldegeneration and remyelination. However, it is not clear how these phenomena interact with eachother and change over the disease course, making clinical outcome and response to treatment hardto predict.
2019
Istituto dei Sistemi Complessi - ISC
Machine Learning
File in questo prodotto:
File Dimensione Formato  
20190414113637_Tommasin (1).pdf

non disponibili

Descrizione: Evaluation of 5-year disease progression in multiple sclerosis via magnetic-resonance-based deep learning techniques
Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 163.95 kB
Formato Adobe PDF
163.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/371527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact