The way people interact in daily life is a challenging phenomenon to capture and to study without altering the natural rhythm of interactions. Our work investigates the possibility of automatically detecting proximity among people, the first mandatory condition before a dyad starts interacting. We present Remote Detection of Human Proximity (ReD-HuP), an algorithm based on the analysis of Bluetooth Low Energy beacons emitted by commercial wearable tags. We validate ReD-HuP with real-world indoor settings and we compare its performance with respect to detailed ground truth data collected from a number of volunteers. Experimental results show an accuracy and F-Score metric up to 95%.
Remote detection of indoor human proximity using bluetooth low energy beacons
Mavilia F;Palumbo F;Barsocchi P;Chessa S;Girolami M
2019
Abstract
The way people interact in daily life is a challenging phenomenon to capture and to study without altering the natural rhythm of interactions. Our work investigates the possibility of automatically detecting proximity among people, the first mandatory condition before a dyad starts interacting. We present Remote Detection of Human Proximity (ReD-HuP), an algorithm based on the analysis of Bluetooth Low Energy beacons emitted by commercial wearable tags. We validate ReD-HuP with real-world indoor settings and we compare its performance with respect to detailed ground truth data collected from a number of volunteers. Experimental results show an accuracy and F-Score metric up to 95%.File | Dimensione | Formato | |
---|---|---|---|
prod_415560-doc_158811.pdf
non disponibili
Descrizione: Remote detection of indoor human proximity using bluetooth low energy beacons
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.