Real-world applications using fuzzy ontologies are increasing in the last years, but the problem of fuzzy ontology learning has not received a lot of attention. While most of the previous approaches focus on the problem of learning fuzzy subclass axioms, we focus on learning fuzzy datatypes. In particular, we describe the Datil system, an implementation using unsupervised clustering algorithms to automatically obtain fuzzy datatypes from different input formats. We also illustrate the practical usefulness with an application: semantic lifestyle profiling.
Datil: learning fuzzy ontology datatypes
Straccia U;
2018
Abstract
Real-world applications using fuzzy ontologies are increasing in the last years, but the problem of fuzzy ontology learning has not received a lot of attention. While most of the previous approaches focus on the problem of learning fuzzy subclass axioms, we focus on learning fuzzy datatypes. In particular, we describe the Datil system, an implementation using unsupervised clustering algorithms to automatically obtain fuzzy datatypes from different input formats. We also illustrate the practical usefulness with an application: semantic lifestyle profiling.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_388978-doc_133951.pdf
solo utenti autorizzati
Descrizione: IPMU18
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
prod_388978-doc_133952.pdf
accesso aperto
Descrizione: IPMU18 draft
Tipologia:
Versione Editoriale (PDF)
Dimensione
601.74 kB
Formato
Adobe PDF
|
601.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


