Fusarium circinatum and Caliciopsis pinea are the causal agents of Pitch canker and Caliciopsis canker, respectively. These diseases affect pines and other conifers both in Europe and North America. The two pathogens cause similar bleeding cankers, especially at the early stage of colonization. Symptoms closely resembling those due to F. c i r c i n at um can be instead associated with C. pinea.SinceF. c i rc i n at um is a quarantine organism, subjected to provisional emergency measures, its report immediately causes serious economic implications, while C. pinea, even if now emerging, is not regulated in the EU nor in the USA. For this reason, a reliable and accurate diagnostic tool able to distinguish between the two organisms was considered a priority. In this study, we developed and standardized a duplex real-time PCR assay allowing the simultaneous recognition of C. pinea and F. circinatum DNA in pine tissue in a reasonably short time and for amounts as small as 0.06 pg/?l. The molecular assay is, therefore, able to detect the infection even before symptoms have fully developed. The test was challenged with a very large set of strains (110 different isolates) collected in different regions of the world and host trees, and gave reliable results. The high efficiency of this method suggests its use as a standard diagnostic tool during phytosanitary controls. In addition, the duplex realtime PCR assay presented here is the first DNA-based method designed to detect C. pinea, which is becoming an increasing threat to pine stands both in North America and in Europe.

Duplex real-time PCR assay for the simultaneous detection of Caliciopsis pinea and Fusarium circinatum in pine samples

Luchi N;Pepori AL;Bartolini P;Santini A
2018

Abstract

Fusarium circinatum and Caliciopsis pinea are the causal agents of Pitch canker and Caliciopsis canker, respectively. These diseases affect pines and other conifers both in Europe and North America. The two pathogens cause similar bleeding cankers, especially at the early stage of colonization. Symptoms closely resembling those due to F. c i r c i n at um can be instead associated with C. pinea.SinceF. c i rc i n at um is a quarantine organism, subjected to provisional emergency measures, its report immediately causes serious economic implications, while C. pinea, even if now emerging, is not regulated in the EU nor in the USA. For this reason, a reliable and accurate diagnostic tool able to distinguish between the two organisms was considered a priority. In this study, we developed and standardized a duplex real-time PCR assay allowing the simultaneous recognition of C. pinea and F. circinatum DNA in pine tissue in a reasonably short time and for amounts as small as 0.06 pg/?l. The molecular assay is, therefore, able to detect the infection even before symptoms have fully developed. The test was challenged with a very large set of strains (110 different isolates) collected in different regions of the world and host trees, and gave reliable results. The high efficiency of this method suggests its use as a standard diagnostic tool during phytosanitary controls. In addition, the duplex realtime PCR assay presented here is the first DNA-based method designed to detect C. pinea, which is becoming an increasing threat to pine stands both in North America and in Europe.
2018
Istituto per la Protezione Sostenibile delle Piante - IPSP
Pitch canker . Caliciopsis canker . Pine pathogens . TaqMan MGB probe . Early detection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/376067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact