Abstract - The paper deals in some detail with the application of examplebased machine learning techniques to the task of automatically acquiring semantic information from functionally annotated texts. Special emphasis is placed on the use of “analogical proportions” as a means of structuring the knowledge embodied in attested examples, and weighing up their contribution to a variety of lexico-semantic classification tasks. Careful quantitative analysis of automatically acquired information proves to shed considerable light on the semantic inter-connectivity of input data, their structure and organising principles.

Example-based automatic induction of semantic classes through entropic scores

Montemagni S;Pirrelli V
2003

Abstract

Abstract - The paper deals in some detail with the application of examplebased machine learning techniques to the task of automatically acquiring semantic information from functionally annotated texts. Special emphasis is placed on the use of “analogical proportions” as a means of structuring the knowledge embodied in attested examples, and weighing up their contribution to a variety of lexico-semantic classification tasks. Careful quantitative analysis of automatically acquired information proves to shed considerable light on the semantic inter-connectivity of input data, their structure and organising principles.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Allegrini P it
dc.authority.people Montemagni S it
dc.authority.people Pirrelli V it
dc.collection.id.s b3f88f24-048a-4e43-8ab1-6697b90e068e *
dc.collection.name 01.01 Articolo in rivista *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/19 00:45:16 -
dc.date.available 2024/02/19 00:45:16 -
dc.date.issued 2003 -
dc.description.abstract Abstract - The paper deals in some detail with the application of examplebased machine learning techniques to the task of automatically acquiring semantic information from functionally annotated texts. Special emphasis is placed on the use of “analogical proportions” as a means of structuring the knowledge embodied in attested examples, and weighing up their contribution to a variety of lexico-semantic classification tasks. Careful quantitative analysis of automatically acquired information proves to shed considerable light on the semantic inter-connectivity of input data, their structure and organising principles. -
dc.description.allpeople Allegrini, P; Montemagni, S; Pirrelli, V -
dc.description.allpeopleoriginal Allegrini P., Montemagni S., Pirrelli V. -
dc.description.fulltext none en
dc.description.numberofauthors 3 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/37654 -
dc.relation.firstpage 1 -
dc.relation.lastpage 45 -
dc.relation.volume 16-17 -
dc.title Example-based automatic induction of semantic classes through entropic scores en
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 01 Contributo su Rivista::01.01 Articolo in rivista it
dc.type.miur 262 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 64466 -
iris.orcid.lastModifiedDate 2024/04/04 16:01:22 *
iris.orcid.lastModifiedMillisecond 1712239282026 *
iris.sitodocente.maxattempts 1 -
Appare nelle tipologie: 01.01 Articolo in rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/37654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact