In this study, we deposited Fe films on MoS2 flakes, and investigated the microscopic magnetic behavior on individual flakes. The MoS2 flakes were fabricated on SiO2/Si(1 0 0) substrates using chemical vapor deposition. Fe coverage was deposited on the MoS2 flakes by e-beam evaporation with a thin Pd capping for protection. Investigations by atomic force microscope and Raman spectroscopy confirmed that the MoS2 flakes had a mean lateral size of 10-20 mu m and mostly single layer thick. After depositing 3.6 and 7.0 nm Fe on MoS2/SiO2, clear hysteresis loops were observable with the in-plane magnetic field. From the investigation using a magneto-optical Kerr microscope, we measured the hysteresis curves within individual MoS2 flakes. Although the Fe coverage was much thicker than the MoS2 atomic step height (similar to 0.66 nm) and the direct connection and strong ferromagnetic coupling between Fe/MoS2 and Fe/SiO2 were expected, a magnetic decoupling between the magnetic domains of Fe/MoS2 and Fe/SiO2 was surprisingly observed. For 3.6 nm Fe/MoS2, the magnetic coercivity (Hc) was 28 +/- 5 Oe, while in contrast, the Hc of 3.6 nm Fe/SiO2 ranged 58 +/- 5 Oe. With a thicker Fe coverage of 7.0 nm, the Hc of Fe/MoS2 and Fe/SiO2 converged and the magnetic decoupling became too weak to observe. The distinct interface magnetic anisotropy of Fe on different substrates was held responsible for the observed magnetic decoupling across the MoS2 atomic step between Fe/MoS2 and Fe/SiO2 domains. These observations will be valuable in combining a magnetic coverage with a single layer MoS2 for future spintronic applications.

Magnetic decoupling of Fe coverage across atomic step of MoS2 flakes on SiO2 surface

Bisio Francesco;
2017

Abstract

In this study, we deposited Fe films on MoS2 flakes, and investigated the microscopic magnetic behavior on individual flakes. The MoS2 flakes were fabricated on SiO2/Si(1 0 0) substrates using chemical vapor deposition. Fe coverage was deposited on the MoS2 flakes by e-beam evaporation with a thin Pd capping for protection. Investigations by atomic force microscope and Raman spectroscopy confirmed that the MoS2 flakes had a mean lateral size of 10-20 mu m and mostly single layer thick. After depositing 3.6 and 7.0 nm Fe on MoS2/SiO2, clear hysteresis loops were observable with the in-plane magnetic field. From the investigation using a magneto-optical Kerr microscope, we measured the hysteresis curves within individual MoS2 flakes. Although the Fe coverage was much thicker than the MoS2 atomic step height (similar to 0.66 nm) and the direct connection and strong ferromagnetic coupling between Fe/MoS2 and Fe/SiO2 were expected, a magnetic decoupling between the magnetic domains of Fe/MoS2 and Fe/SiO2 was surprisingly observed. For 3.6 nm Fe/MoS2, the magnetic coercivity (Hc) was 28 +/- 5 Oe, while in contrast, the Hc of 3.6 nm Fe/SiO2 ranged 58 +/- 5 Oe. With a thicker Fe coverage of 7.0 nm, the Hc of Fe/MoS2 and Fe/SiO2 converged and the magnetic decoupling became too weak to observe. The distinct interface magnetic anisotropy of Fe on different substrates was held responsible for the observed magnetic decoupling across the MoS2 atomic step between Fe/MoS2 and Fe/SiO2 domains. These observations will be valuable in combining a magnetic coverage with a single layer MoS2 for future spintronic applications.
2017
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
thin film
magnetism
interface anisotropy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/376627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact