HypothesisBolaamphiphiles are characterized by wide polymorphism of their aggregates, due to the connection of the headgroups that renders their investigation very intriguing in several technological applications. Some bolaamphiphiles displaying the triphenylphosphonium motif (TPP-bolaamphiphiles) were previously explored for their ability in crossing the mitochondrial membranes but their colloidal features, which are crucial for the potential development of an effective drug delivery system, were never investigated.ExperimentsSingle chain TPP-bolaamphiphiles, featuring chains of 12, 16, 20 and 30 methylene units, were synthesized and their aggregation features (Krafft point, cac, dimensions, morphology, stability) were investigated by conductivity, dialysis, transmission electron microscopy, Raman spectroscopy, dynamic and dielectrophoretic laser light scattering measurements.FindingsAll the TPP-bolaamphiphiles spontaneously self-assemble into vesicles, independently of the chain length. The bolaamphipile with the longest chain forms monodispersed vesicles whereas for the other bolaamphiphiles two distinct populations of vesicles are observed. All vesicles are not equilibrium systems, in particular vesicles formed by the bolaamphiphiles featuring 20 and 30 methylene units result notably stable to dilution thanks to both the tightening of molecular packing at increasing chain length and the progressive reduction of the monomer percentage in U-shaped conformation.These features make these TPP-bolaamphiphiles very attractive as minor components for the development of novel mitochondriotropic liposomes.

Aggregation behaviour of triphenylphosphonium bolaamphiphiles

F. Ceccacci;S. Sennato;V. Mussi;F. Bordi;G. Mancini;C. Bombelli
2018

Abstract

HypothesisBolaamphiphiles are characterized by wide polymorphism of their aggregates, due to the connection of the headgroups that renders their investigation very intriguing in several technological applications. Some bolaamphiphiles displaying the triphenylphosphonium motif (TPP-bolaamphiphiles) were previously explored for their ability in crossing the mitochondrial membranes but their colloidal features, which are crucial for the potential development of an effective drug delivery system, were never investigated.ExperimentsSingle chain TPP-bolaamphiphiles, featuring chains of 12, 16, 20 and 30 methylene units, were synthesized and their aggregation features (Krafft point, cac, dimensions, morphology, stability) were investigated by conductivity, dialysis, transmission electron microscopy, Raman spectroscopy, dynamic and dielectrophoretic laser light scattering measurements.FindingsAll the TPP-bolaamphiphiles spontaneously self-assemble into vesicles, independently of the chain length. The bolaamphipile with the longest chain forms monodispersed vesicles whereas for the other bolaamphiphiles two distinct populations of vesicles are observed. All vesicles are not equilibrium systems, in particular vesicles formed by the bolaamphiphiles featuring 20 and 30 methylene units result notably stable to dilution thanks to both the tightening of molecular packing at increasing chain length and the progressive reduction of the monomer percentage in U-shaped conformation.These features make these TPP-bolaamphiphiles very attractive as minor components for the development of novel mitochondriotropic liposomes.
2018
Istituto per i Sistemi Biologici - ISB (ex IMC)
Istituto per la Microelettronica e Microsistemi - IMM
Istituto dei Sistemi Complessi - ISC
Bolaamphiphiles Cationic lipids Triphenylphosphonium Thermodynamic stability Monolayer vesicles Raman spectroscopy U-shaped conformation Extended conformation
File in questo prodotto:
File Dimensione Formato  
prod_389579-doc_160751.pdf

solo utenti autorizzati

Descrizione: Aggregation behaviour of triphenylphosphonium bolaamphiphiles
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/376767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact