The paper focuses on the automatic extraction of domain knowledge from Italian legal texts and presents a fully-implemented ontology learning system (T2K, Text-2-Knowledge) that includes a battery of tools for Natural Language Processing, statistical text analysis and machine learning. Evaluated results show the considerable potential of systems like T2K, exploiting an incremental interleaving of NLP and machine learning techniques for accurate large-scale semi-automatic extraction and structuring of domain-specific knowledge.

Dal testo alla conoscenza e ritorno: estrazione terminologica e annotazione semantica di basi documentali di dominio

Dell'Orletta F;Marchi S;Montemagni S;Pirrelli V;Venturi G
2008

Abstract

The paper focuses on the automatic extraction of domain knowledge from Italian legal texts and presents a fully-implemented ontology learning system (T2K, Text-2-Knowledge) that includes a battery of tools for Natural Language Processing, statistical text analysis and machine learning. Evaluated results show the considerable potential of systems like T2K, exploiting an incremental interleaving of NLP and machine learning techniques for accurate large-scale semi-automatic extraction and structuring of domain-specific knowledge.
Campo DC Valore Lingua
dc.authority.ancejournal AIDA INFORMAZIONI (ONLINE) -
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Dell'Orletta F it
dc.authority.people Lenci A it
dc.authority.people Marchi S it
dc.authority.people Montemagni S it
dc.authority.people Pirrelli V it
dc.authority.people Venturi G it
dc.collection.id.s b3f88f24-048a-4e43-8ab1-6697b90e068e *
dc.collection.name 01.01 Articolo in rivista *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/19 00:49:29 -
dc.date.available 2024/02/19 00:49:29 -
dc.date.issued 2008 -
dc.description.abstracteng The paper focuses on the automatic extraction of domain knowledge from Italian legal texts and presents a fully-implemented ontology learning system (T2K, Text-2-Knowledge) that includes a battery of tools for Natural Language Processing, statistical text analysis and machine learning. Evaluated results show the considerable potential of systems like T2K, exploiting an incremental interleaving of NLP and machine learning techniques for accurate large-scale semi-automatic extraction and structuring of domain-specific knowledge. -
dc.description.affiliations Università di Pisa; ILC-CNR -
dc.description.allpeople Dell'Orletta F.; Lenci A.; Marchi S.; Montemagni S.; Pirrelli V.; Venturi G. -
dc.description.allpeopleoriginal Dell'Orletta F.; Lenci A.; Marchi S.; Montemagni S.; Pirrelli V.; Venturi G. -
dc.description.fulltext none en
dc.description.numberofauthors 4 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/37713 -
dc.language.iso ita -
dc.miur.last.status.update 2024-10-10T13:46:35Z *
dc.relation.firstpage 197 -
dc.relation.issue 1-2 -
dc.relation.lastpage 218 -
dc.relation.numberofpages 22 -
dc.relation.volume 26 -
dc.subject.keywords Natural Language Processing -
dc.subject.keywords Machine Learning -
dc.subject.keywords Knowledge extraction from texts -
dc.subject.keywords Ontology learning -
dc.subject.keywords Legal ontologies -
dc.subject.singlekeyword Natural Language Processing *
dc.subject.singlekeyword Machine Learning *
dc.subject.singlekeyword Knowledge extraction from texts *
dc.subject.singlekeyword Ontology learning *
dc.subject.singlekeyword Legal ontologies *
dc.title Dal testo alla conoscenza e ritorno: estrazione terminologica e annotazione semantica di basi documentali di dominio en
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 01 Contributo su Rivista::01.01 Articolo in rivista it
dc.type.miur 262 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 64541 -
iris.orcid.lastModifiedDate 2024/03/02 03:11:11 *
iris.orcid.lastModifiedMillisecond 1709345471314 *
iris.sitodocente.maxattempts 1 -
Appare nelle tipologie: 01.01 Articolo in rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/37713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact