Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CNR Institutional Research Information System
Two high performance JET-ILW pulses, pertaining to the 2016 experimental campaign, have been numerically simulated with the self-consistent code COREDIV with the aim of predicting the ELM-averaged power load to the target when extrapolated to DT plasmas. The input power of about 33 MW as well as the total radiated power and the average density are similar in the two pulses, but for one of them the density is provided by combined low gas puff and pellet injection, characterized by low SOL density, for the other one by gas fuelling only, at higher SOT. density. Considering the magnetic configuration of theses pulses and the presence of a significant amount of Ni (not included in the version of the code used for these simulations), a number of assumptions are made in order to reproduce numerically the main core and SOL experimental data. The extrapolation to DT plasmas at the original input power of 33 MW, and taking into account only the thermal component of the alpha-power, does not show any significant difference regarding the power to the target with respect to the DD case. In contrast, the simulations at auxiliary power 40 MW, both at the original I-p = 3 MA and at I-p = 4 MA, show that the power to the target for both pulses is possibly too high to be sustained for about 5 s by strike-point sweeping alone without any control by Ne seeding. Even though the target power load may decrease to about 13-15 MW with substantial Ne seeding for both pulses, as from numerical predictions, there are indications suggesting that the control of the power load may be more critical for the pulse with pellet injection, due to the reduced SOL radiation.
COREDIV numerical simulation of high neutron rate JET-ILW DD pulses in view of extension to JET-ILW DT experiments
Two high performance JET-ILW pulses, pertaining to the 2016 experimental campaign, have been numerically simulated with the self-consistent code COREDIV with the aim of predicting the ELM-averaged power load to the target when extrapolated to DT plasmas. The input power of about 33 MW as well as the total radiated power and the average density are similar in the two pulses, but for one of them the density is provided by combined low gas puff and pellet injection, characterized by low SOL density, for the other one by gas fuelling only, at higher SOT. density. Considering the magnetic configuration of theses pulses and the presence of a significant amount of Ni (not included in the version of the code used for these simulations), a number of assumptions are made in order to reproduce numerically the main core and SOL experimental data. The extrapolation to DT plasmas at the original input power of 33 MW, and taking into account only the thermal component of the alpha-power, does not show any significant difference regarding the power to the target with respect to the DD case. In contrast, the simulations at auxiliary power 40 MW, both at the original I-p = 3 MA and at I-p = 4 MA, show that the power to the target for both pulses is possibly too high to be sustained for about 5 s by strike-point sweeping alone without any control by Ne seeding. Even though the target power load may decrease to about 13-15 MW with substantial Ne seeding for both pulses, as from numerical predictions, there are indications suggesting that the control of the power load may be more critical for the pulse with pellet injection, due to the reduced SOL radiation.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377957
Citazioni
ND
4
4
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall'Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l'Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.