This paper derives a priori residual-type bounds for the Arnoldi approximation of a matrix function together with a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the decay behavior of the entries of functions of banded matrices. Specifically, a priori decay bounds for the entries of functions of banded non-Hermitian matrices will be exploited, using Faber polynomial approximation. Numerical experiments illustrate the quality of the results.

Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices

Pozza S;Simoncini V
2019

Abstract

This paper derives a priori residual-type bounds for the Arnoldi approximation of a matrix function together with a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the decay behavior of the entries of functions of banded matrices. Specifically, a priori decay bounds for the entries of functions of banded non-Hermitian matrices will be exploited, using Faber polynomial approximation. Numerical experiments illustrate the quality of the results.
2019
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Arnoldi algorithm; Inexact Arnoldi algorithm; Matrix functions; Faber polynomials; Decay bounds; Banded matrices
File in questo prodotto:
File Dimensione Formato  
prod_434144-doc_155139.pdf

solo utenti autorizzati

Descrizione: Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 572.85 kB
Formato Adobe PDF
572.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_434144-doc_155140.pdf

accesso aperto

Descrizione: Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices
Tipologia: Documento in Pre-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 288.83 kB
Formato Adobe PDF
288.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact