Tropospheric ozone (O3) impairs physiological processes of plants while nitrogen (N) deposition may cause imbalances in soil N and other nutrients such as phosphorus (P) suggesting an increase of P demand for plants. However, the combined effect of O3, soil N and P on isoprene emission from leaves has never been tested. We therefore examined isoprene emission in leaves of Oxford poplar clone exposed to O3 (ambient, AA [35.0 nmol mol-1 as daily mean]; 1.5 × AA; 2.0 × AA), soil N (0 and 80 kg N ha-1) and soil P (0, 40 and 80 kg P ha-1) in July and September in a Free-Air Controlled Exposure (FACE) facility. We also investigated the response of isoprene emission to foliar N, P and abscisic acid (ABA) contents in September because the 2-C-methylerythritol-5-phosphate (MEP) pathway of isoprenoid biosynthesis produces ABA. We found that O3 increased isoprene emission in July, which was associated to increased dark respiration, suggesting an activation of metabolism against O3 stress as an initial response. However, O3 decreased isoprene emission in September which was associated to reduced net photosynthesis. In September, isoprene emission was positively correlated with leaf N content and negatively correlated with leaf P content in AA. However, no response of isoprene emission to foliar N and P was found in elevated O3, suggesting that the isoprene responses to foliar N and P depended on the O3 exposure levels. Isoprene emission rate in 1.5 × AA and 2.0 × AA increased with increasing leaf ABA content, indicating accelerated senescence of injured leaves to favor new leaf growth when high O3 and nutritional availability in the soil were combined. Even though foliar N and P usually act as a proxy for isoprene emission rate, the impact of recent abiotic factors such as O3 should be always considered for modeling isoprene emission under climate change.

Ozone impairs the response of isoprene emission to foliar nitrogen and phosphorus in poplar

Hoshika Y.;Brilli F.;Baraldi R.;Fares S.;Carrari E.;Paoletti E.
2020

Abstract

Tropospheric ozone (O3) impairs physiological processes of plants while nitrogen (N) deposition may cause imbalances in soil N and other nutrients such as phosphorus (P) suggesting an increase of P demand for plants. However, the combined effect of O3, soil N and P on isoprene emission from leaves has never been tested. We therefore examined isoprene emission in leaves of Oxford poplar clone exposed to O3 (ambient, AA [35.0 nmol mol-1 as daily mean]; 1.5 × AA; 2.0 × AA), soil N (0 and 80 kg N ha-1) and soil P (0, 40 and 80 kg P ha-1) in July and September in a Free-Air Controlled Exposure (FACE) facility. We also investigated the response of isoprene emission to foliar N, P and abscisic acid (ABA) contents in September because the 2-C-methylerythritol-5-phosphate (MEP) pathway of isoprenoid biosynthesis produces ABA. We found that O3 increased isoprene emission in July, which was associated to increased dark respiration, suggesting an activation of metabolism against O3 stress as an initial response. However, O3 decreased isoprene emission in September which was associated to reduced net photosynthesis. In September, isoprene emission was positively correlated with leaf N content and negatively correlated with leaf P content in AA. However, no response of isoprene emission to foliar N and P was found in elevated O3, suggesting that the isoprene responses to foliar N and P depended on the O3 exposure levels. Isoprene emission rate in 1.5 × AA and 2.0 × AA increased with increasing leaf ABA content, indicating accelerated senescence of injured leaves to favor new leaf growth when high O3 and nutritional availability in the soil were combined. Even though foliar N and P usually act as a proxy for isoprene emission rate, the impact of recent abiotic factors such as O3 should be always considered for modeling isoprene emission under climate change.
2020
Istituto per la Protezione Sostenibile delle Piante - IPSP
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Istituto per la BioEconomia - IBE
Ozone
Isoprene emission
Nitrogen deposition
Phosphorus
Abscisic acid
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0269749120363685-main.pdf

solo utenti autorizzati

Descrizione: Ozone impairs the response of isoprene emission to foliar nitrogen and phosphorus in poplar
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact