A classical battery converts chemical energy into a persistent voltage bias that can power electronic circuits. Similarly, a phase battery is a quantum device that provides a persistent phase bias to the wave function of a quantum circuit. It represents a key element for quantum technologies based on phase coherence. Here we demonstrate a phase battery in a hybrid superconducting circuit. It consists of an n-doped InAs nanowire with unpaired-spin surface states, that is proximitized by Al superconducting leads. We find that the ferromagnetic polarization of the unpaired-spin states is efficiently converted into a persistent phase bias ?0 across the wire, leading to the anomalous Josephson effect1,2. We apply an external in-plane magnetic field and, thereby, achieve continuous tuning of ?0. Hence, we can charge and discharge the quantum phase battery. The observed symmetries of the anomalous Josephson effect in the vectorial magnetic field are in agreement with our theoretical model. Our results demonstrate how the combined action of spin-orbit coupling and exchange interaction induces a strong coupling between charge, spin and superconducting phase, able to break the phase rigidity of the system.

A Josephson phase battery

Strambini E
;
Citro R;Braggio A;Rocci M;Ligato N;Zannier V;Sorba L;Giazotto F
2020

Abstract

A classical battery converts chemical energy into a persistent voltage bias that can power electronic circuits. Similarly, a phase battery is a quantum device that provides a persistent phase bias to the wave function of a quantum circuit. It represents a key element for quantum technologies based on phase coherence. Here we demonstrate a phase battery in a hybrid superconducting circuit. It consists of an n-doped InAs nanowire with unpaired-spin surface states, that is proximitized by Al superconducting leads. We find that the ferromagnetic polarization of the unpaired-spin states is efficiently converted into a persistent phase bias ?0 across the wire, leading to the anomalous Josephson effect1,2. We apply an external in-plane magnetic field and, thereby, achieve continuous tuning of ?0. Hence, we can charge and discharge the quantum phase battery. The observed symmetries of the anomalous Josephson effect in the vectorial magnetic field are in agreement with our theoretical model. Our results demonstrate how the combined action of spin-orbit coupling and exchange interaction induces a strong coupling between charge, spin and superconducting phase, able to break the phase rigidity of the system.
2020
Istituto Nanoscienze - NANO
---
File in questo prodotto:
File Dimensione Formato  
s41565-020-0712-7.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2001.03393v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 87
social impact