In global healthcare and point-of-care diagnostics there is an increasing request of medical equipment with devices able to provide fast and reliable testing for clinical diagnosis. In developing countries that lack of adequate facilities, this need is even more urgent. Lab-on-a-Chip devices have undergone a great growth during the last decade, supported by optical imaging techniques more and more refined. Here we present recent progresses in developing imaging tools based on holographic microscopy that can be very useful when applied into bio-microfluidics. Digital Holography (DH) is label-free, non-invasive, potentially high-throughput and, above all, quantitative. We show the recent advancements of DH in transmission microscopy mode, when this is applied to microfluidics to yield 3D imaging capabilities. Holographic flow cytometry through quantitative phase imaging and in-flow tomography for the analysis and manipulation of micro-particles and cells will be shown [1-3]. Medical diagnostic applications based on DH will be also shown. Moreover, we present a portable common-path holographic microscope embedded onboard a microfluidic device that paves the way to the application of DH on the field [4].
3D imaging in microfluidics: New holographic methods and devices
Bianco V;Miccio L;Memmolo P;Merola F;Mandracchia B;Mugnano M;Paturzo M;Ferraro P
2019
Abstract
In global healthcare and point-of-care diagnostics there is an increasing request of medical equipment with devices able to provide fast and reliable testing for clinical diagnosis. In developing countries that lack of adequate facilities, this need is even more urgent. Lab-on-a-Chip devices have undergone a great growth during the last decade, supported by optical imaging techniques more and more refined. Here we present recent progresses in developing imaging tools based on holographic microscopy that can be very useful when applied into bio-microfluidics. Digital Holography (DH) is label-free, non-invasive, potentially high-throughput and, above all, quantitative. We show the recent advancements of DH in transmission microscopy mode, when this is applied to microfluidics to yield 3D imaging capabilities. Holographic flow cytometry through quantitative phase imaging and in-flow tomography for the analysis and manipulation of micro-particles and cells will be shown [1-3]. Medical diagnostic applications based on DH will be also shown. Moreover, we present a portable common-path holographic microscope embedded onboard a microfluidic device that paves the way to the application of DH on the field [4].I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.