In 1976, Leon Chua showed that a thermistor can be modeled as a memristive device. Starting from this statement we designed a circuit that has four circuit elements: a linear passive inductor, a linear passive capacitor, a nonlinear resistor and a thermistor, that is, a nonlinear "locally active" memristor. Thus, the purpose of this work was to use a physical memristor, the thermistor, in a Muthuswamy-Chua chaotic system (circuit) instead of memristor emulators. Such circuit has been modeled by a new three-dimensional autonomous dynamical system exhibiting very particular properties such as the transition from torus breakdown to chaos. Then, mathematical analysis and detailed numerical investigations have enabled to establish that such a transition corresponds to the so-called route to Shilnikov spiral chaos but gives rise to a "double spiral attractor".

A physical memristor based Muthuswamy-Chua-Ginoux system

Meucci R;Euzzor S;Di Garbo A;
2020

Abstract

In 1976, Leon Chua showed that a thermistor can be modeled as a memristive device. Starting from this statement we designed a circuit that has four circuit elements: a linear passive inductor, a linear passive capacitor, a nonlinear resistor and a thermistor, that is, a nonlinear "locally active" memristor. Thus, the purpose of this work was to use a physical memristor, the thermistor, in a Muthuswamy-Chua chaotic system (circuit) instead of memristor emulators. Such circuit has been modeled by a new three-dimensional autonomous dynamical system exhibiting very particular properties such as the transition from torus breakdown to chaos. Then, mathematical analysis and detailed numerical investigations have enabled to establish that such a transition corresponds to the so-called route to Shilnikov spiral chaos but gives rise to a "double spiral attractor".
2020
Istituto di Biofisica - IBF
Istituto Nazionale di Ottica - INO
A physical memristor based Muthuswamy-Chua-Ginoux system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact