The atomic diffusion and compositional variations upon melting have been studied by transmission electron microscopy and electron energy loss spectroscopy in Ge rich GeSbTe films, with a composition optimized for memory applications. Melting and quenching has been achieved by laser pulses, in order to study pure thermal diffusion without electric field induced electromigration. The effect of different laser energy densities has been investigated. The diffusion of Ge atoms in the molten phase is found to be a prominent mechanism and, by employing finite elements computational analysis, a diffusion coefficient of Ge on the order of 5 × 10 cm s has been estimated.

Atomic diffusion in laser irradiated Ge rich GeSbTe thin films for phase change memory applications

Bongiorno C;Rimini E
2018

Abstract

The atomic diffusion and compositional variations upon melting have been studied by transmission electron microscopy and electron energy loss spectroscopy in Ge rich GeSbTe films, with a composition optimized for memory applications. Melting and quenching has been achieved by laser pulses, in order to study pure thermal diffusion without electric field induced electromigration. The effect of different laser energy densities has been investigated. The diffusion of Ge atoms in the molten phase is found to be a prominent mechanism and, by employing finite elements computational analysis, a diffusion coefficient of Ge on the order of 5 × 10 cm s has been estimated.
2018
phase change memory
atomic diffusion
segregation
laser irradiation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/382515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact