Unmanned Aerial Vehicles (UAVs) are receiving increasing attention for use in Non-Destructive Testing due to their ability to access areas where manual inspection is not practical. Contact-based UAV ultrasonic inspections grant the opportunity to remotely monitor the structural health of an industrial asset with enhanced internal integrity information. Ultrasonic inspection is a Non-Destructive Testing (NDT) method conventionally used in corrosion mapping. Surface contacting ultrasonic transducers provide enhanced structural integrity information. However, due to near-surface aerodynamic effects, angular sensitivity of the ultrasound probe and alignment error during autonomous inspections, ultrasonic thickness measurements with low Signal-to-Noise Ratio (SNR) are common. Coded excitation consists of a series of binary bits, whereby the polarity of the voltage is varied following a set excitation sequence to produce desirable signal properties. Here, coded excitation is utilised to increase SNR and thereby reduce measurement uncertainty originating from non-ideal transducer alignment with asset surfaces during inspections. This paper evaluates the performance of two binary code sequences (8-bit Golay, 13-bit Barker) for use in autonomous airborne inspections.

Evaluation of Coded Excitations for Autonomous Airborne Ultrasonic Inspection

Mineo Carmelo;
2019

Abstract

Unmanned Aerial Vehicles (UAVs) are receiving increasing attention for use in Non-Destructive Testing due to their ability to access areas where manual inspection is not practical. Contact-based UAV ultrasonic inspections grant the opportunity to remotely monitor the structural health of an industrial asset with enhanced internal integrity information. Ultrasonic inspection is a Non-Destructive Testing (NDT) method conventionally used in corrosion mapping. Surface contacting ultrasonic transducers provide enhanced structural integrity information. However, due to near-surface aerodynamic effects, angular sensitivity of the ultrasound probe and alignment error during autonomous inspections, ultrasonic thickness measurements with low Signal-to-Noise Ratio (SNR) are common. Coded excitation consists of a series of binary bits, whereby the polarity of the voltage is varied following a set excitation sequence to produce desirable signal properties. Here, coded excitation is utilised to increase SNR and thereby reduce measurement uncertainty originating from non-ideal transducer alignment with asset surfaces during inspections. This paper evaluates the performance of two binary code sequences (8-bit Golay, 13-bit Barker) for use in autonomous airborne inspections.
2019
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
9781728145969
Coded Excitation
UAV
Ultrasonic Inspection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/383229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact