OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given a target class T of an OWL ontology, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T. To do so, we present Fuzzy OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation. An interesting feature is that the learned rules can be represented directly into Fuzzy OWL 2. As a consequence, any Fuzzy OWL 2 reasoner can then be used to automatically determine/classify (and to which degree) whether an individual belongs to the target class T.

Fuzzy OWL-BOOST: Learning Fuzzy Concept Inclusions via Real-Valued Boosting

Cardillo FA;Straccia U
2020

Abstract

OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given a target class T of an OWL ontology, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T. To do so, we present Fuzzy OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation. An interesting feature is that the learned rules can be represented directly into Fuzzy OWL 2. As a consequence, any Fuzzy OWL 2 reasoner can then be used to automatically determine/classify (and to which degree) whether an individual belongs to the target class T.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.orgunit Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI -
dc.authority.people Cardillo FA it
dc.authority.people Straccia U it
dc.collection.id.s f3ccd2f0-452a-4e09-bfb4-66369d480d48 *
dc.collection.name 08.02 Rapporto di ricerca, Relazione scientifica *
dc.contributor.appartenenza Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI *
dc.contributor.appartenenza.mi 973 *
dc.date.accessioned 2024/02/18 22:25:20 -
dc.date.available 2024/02/18 22:25:20 -
dc.date.issued 2020 -
dc.description.abstracteng OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given a target class T of an OWL ontology, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T. To do so, we present Fuzzy OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation. An interesting feature is that the learned rules can be represented directly into Fuzzy OWL 2. As a consequence, any Fuzzy OWL 2 reasoner can then be used to automatically determine/classify (and to which degree) whether an individual belongs to the target class T. -
dc.description.affiliations CNR-ILC, Pisa, Italy; CNR-ISTI, Pisa, Italy -
dc.description.allpeople Cardillo, Fa; Straccia, U -
dc.description.allpeopleoriginal Cardillo F.A.; Straccia U. -
dc.description.fulltext open en
dc.description.numberofauthors 2 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/384740 -
dc.identifier.url https://arxiv.org/abs/2008.05297 -
dc.language.iso eng -
dc.miur.last.status.update 2024-10-06T19:23:58Z *
dc.relation.firstpage 1 -
dc.relation.lastpage 26 -
dc.relation.numberofpages 26 -
dc.subject.keywords Fuzzy Logic -
dc.subject.keywords Description Logics -
dc.subject.keywords OWL 2 -
dc.subject.keywords Machine Learning -
dc.subject.keywords AdaBoost -
dc.subject.singlekeyword Fuzzy Logic *
dc.subject.singlekeyword Description Logics *
dc.subject.singlekeyword OWL 2 *
dc.subject.singlekeyword Machine Learning *
dc.subject.singlekeyword AdaBoost *
dc.title Fuzzy OWL-BOOST: Learning Fuzzy Concept Inclusions via Real-Valued Boosting en
dc.type.driver info:eu-repo/semantics/other -
dc.type.full 08 Report e Working Paper::08.02 Rapporto di ricerca, Relazione scientifica it
dc.type.miur -2.0 -
dc.ugov.descaux1 428576 -
iris.mediafilter.data 2025/03/21 03:39:10 *
iris.orcid.lastModifiedDate 2024/04/04 11:59:13 *
iris.orcid.lastModifiedMillisecond 1712224753886 *
iris.sitodocente.maxattempts 3 -
Appare nelle tipologie: 08.02 Rapporto di ricerca, Relazione scientifica
File in questo prodotto:
File Dimensione Formato  
prod_428576-doc_152928.pdf

accesso aperto

Descrizione: fss20
Dimensione 804.77 kB
Formato Adobe PDF
804.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/384740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact