Purpose: The purpose of this study is the characterization of the dramatic variation in the flow scenario occurring at incipient stall conditions on a NACA0015 hydrofoil at moderate Reynolds numbers via the experimental analysis of time- and space-resolved skin-friction maps. The examined flow conditions are relevant for a variety of applications, including renewable energy production and unmanned and micro-aerial vehicles. Design/methodology/approach: Grounding on the global temperature data acquired via temperature-sensitive paint, the proposed methodology adopts two approaches: one to obtain time-resolved, relative skin-friction vector fields by means of an optical-flow-based algorithm and the other one to extract quantitative, time-averaged skin-friction maps after minimization of the dissimilarity between the observed passive transport of temperature fluctuations and that suggested by the Taylor hypothesis. Findings: Through the synergistic application of the proposed methods, the time-dependent evolution of the incipient stall over the hydrofoil suction side is globally described by firstly identifying the trailing edge separation at an angle of attack (AoA) AoA = 11.5°, and then by capturing the onset of upstream oriented, mushroom-like structures at AoA = 13°. The concomitant occurrence of both scenarios is found at the intermediate incidence AoA = 12.2°. Originality/value: The qualitative, time-resolved skin-friction topology, combined with the quantitative, time-averaged distribution of the streamwise friction velocity, enables to establish a portrait of the complex, three-dimensional, unsteady scenario occurring at the examined flow conditions, thus providing new, fundamental information for a deeper understanding of the incipient stall development and for its control.

Incipient stall characterization from skin-friction maps

Miozzi Massimo;Capone Alessandro;
2020

Abstract

Purpose: The purpose of this study is the characterization of the dramatic variation in the flow scenario occurring at incipient stall conditions on a NACA0015 hydrofoil at moderate Reynolds numbers via the experimental analysis of time- and space-resolved skin-friction maps. The examined flow conditions are relevant for a variety of applications, including renewable energy production and unmanned and micro-aerial vehicles. Design/methodology/approach: Grounding on the global temperature data acquired via temperature-sensitive paint, the proposed methodology adopts two approaches: one to obtain time-resolved, relative skin-friction vector fields by means of an optical-flow-based algorithm and the other one to extract quantitative, time-averaged skin-friction maps after minimization of the dissimilarity between the observed passive transport of temperature fluctuations and that suggested by the Taylor hypothesis. Findings: Through the synergistic application of the proposed methods, the time-dependent evolution of the incipient stall over the hydrofoil suction side is globally described by firstly identifying the trailing edge separation at an angle of attack (AoA) AoA = 11.5°, and then by capturing the onset of upstream oriented, mushroom-like structures at AoA = 13°. The concomitant occurrence of both scenarios is found at the intermediate incidence AoA = 12.2°. Originality/value: The qualitative, time-resolved skin-friction topology, combined with the quantitative, time-averaged distribution of the streamwise friction velocity, enables to establish a portrait of the complex, three-dimensional, unsteady scenario occurring at the examined flow conditions, thus providing new, fundamental information for a deeper understanding of the incipient stall development and for its control.
2020
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Laminar separation bubble
NACA 0015
Skin friction
Stall
Taylor hypothesis
Temperature-sensitive paint
File in questo prodotto:
File Dimensione Formato  
prod_428659-doc_160261.pdf

non disponibili

Descrizione: Miozzi Incipient stall characterization from skin-friction maps
Tipologia: Versione Editoriale (PDF)
Dimensione 4.41 MB
Formato Adobe PDF
4.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/384810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact