Purpose: The purpose of this study is the characterization of the dramatic variation in the flow scenario occurring at incipient stall conditions on a NACA0015 hydrofoil at moderate Reynolds numbers via the experimental analysis of time- and space-resolved skin-friction maps. The examined flow conditions are relevant for a variety of applications, including renewable energy production and unmanned and micro-aerial vehicles. Design/methodology/approach: Grounding on the global temperature data acquired via temperature-sensitive paint, the proposed methodology adopts two approaches: one to obtain time-resolved, relative skin-friction vector fields by means of an optical-flow-based algorithm and the other one to extract quantitative, time-averaged skin-friction maps after minimization of the dissimilarity between the observed passive transport of temperature fluctuations and that suggested by the Taylor hypothesis. Findings: Through the synergistic application of the proposed methods, the time-dependent evolution of the incipient stall over the hydrofoil suction side is globally described by firstly identifying the trailing edge separation at an angle of attack (AoA) AoA = 11.5°, and then by capturing the onset of upstream oriented, mushroom-like structures at AoA = 13°. The concomitant occurrence of both scenarios is found at the intermediate incidence AoA = 12.2°. Originality/value: The qualitative, time-resolved skin-friction topology, combined with the quantitative, time-averaged distribution of the streamwise friction velocity, enables to establish a portrait of the complex, three-dimensional, unsteady scenario occurring at the examined flow conditions, thus providing new, fundamental information for a deeper understanding of the incipient stall development and for its control.
Incipient stall characterization from skin-friction maps
Miozzi Massimo;Capone Alessandro;
2020
Abstract
Purpose: The purpose of this study is the characterization of the dramatic variation in the flow scenario occurring at incipient stall conditions on a NACA0015 hydrofoil at moderate Reynolds numbers via the experimental analysis of time- and space-resolved skin-friction maps. The examined flow conditions are relevant for a variety of applications, including renewable energy production and unmanned and micro-aerial vehicles. Design/methodology/approach: Grounding on the global temperature data acquired via temperature-sensitive paint, the proposed methodology adopts two approaches: one to obtain time-resolved, relative skin-friction vector fields by means of an optical-flow-based algorithm and the other one to extract quantitative, time-averaged skin-friction maps after minimization of the dissimilarity between the observed passive transport of temperature fluctuations and that suggested by the Taylor hypothesis. Findings: Through the synergistic application of the proposed methods, the time-dependent evolution of the incipient stall over the hydrofoil suction side is globally described by firstly identifying the trailing edge separation at an angle of attack (AoA) AoA = 11.5°, and then by capturing the onset of upstream oriented, mushroom-like structures at AoA = 13°. The concomitant occurrence of both scenarios is found at the intermediate incidence AoA = 12.2°. Originality/value: The qualitative, time-resolved skin-friction topology, combined with the quantitative, time-averaged distribution of the streamwise friction velocity, enables to establish a portrait of the complex, three-dimensional, unsteady scenario occurring at the examined flow conditions, thus providing new, fundamental information for a deeper understanding of the incipient stall development and for its control.File | Dimensione | Formato | |
---|---|---|---|
prod_428659-doc_160261.pdf
non disponibili
Descrizione: Miozzi Incipient stall characterization from skin-friction maps
Tipologia:
Versione Editoriale (PDF)
Dimensione
4.41 MB
Formato
Adobe PDF
|
4.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.