The requirement to increase inspection speeds for non-destructive testing (NDT) is common to many manufacturers. The prevalence of complex curved surfaces in modern products provides motivation for the use of 6 axis robots in these inspections. The techniques and issues associated with conventional manual inspection techniques and automated systems for the inspection of large complex surfaces were reviewed. This paper presents a new MATLAB based software solution (RoboNDT), aiming to fulfil the requirements of robotized NDT inspection. RoboNDT enables flexible trajectory path planning to be accomplished for the inspection of complex curved surfaces. This newly developed software is capable of complex path planning, obstacle avoidance, and external synchronization between robots and connected NDT systems. Comparative accuracy experiments were undertaken to evaluate the path accuracy produced by the software when inspecting a curved 0.5 m and a 1.6 m surface using a KUKA KR16 L6-2 robot. The advantages of this software over conventional off-line-programming approaches are highlighted. By implementing full external control of the robotic hardware, it has been possible to synchronise the NDT data collection with positions at all points along the path. This approach facilitates the future development of additional functionality, suited to both fixed and mobile robot NDT inspection solutions.
Robotic path planning for non-destructive testing through RoboNDT
Mineo Carmelo;
2015
Abstract
The requirement to increase inspection speeds for non-destructive testing (NDT) is common to many manufacturers. The prevalence of complex curved surfaces in modern products provides motivation for the use of 6 axis robots in these inspections. The techniques and issues associated with conventional manual inspection techniques and automated systems for the inspection of large complex surfaces were reviewed. This paper presents a new MATLAB based software solution (RoboNDT), aiming to fulfil the requirements of robotized NDT inspection. RoboNDT enables flexible trajectory path planning to be accomplished for the inspection of complex curved surfaces. This newly developed software is capable of complex path planning, obstacle avoidance, and external synchronization between robots and connected NDT systems. Comparative accuracy experiments were undertaken to evaluate the path accuracy produced by the software when inspecting a curved 0.5 m and a 1.6 m surface using a KUKA KR16 L6-2 robot. The advantages of this software over conventional off-line-programming approaches are highlighted. By implementing full external control of the robotic hardware, it has been possible to synchronise the NDT data collection with positions at all points along the path. This approach facilitates the future development of additional functionality, suited to both fixed and mobile robot NDT inspection solutions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.