Compared to manual Non-Destructive Testing (NDT) for inspection of engineering components, automated robotic deployment of the same NDT techniques offers an increase in accuracy, precision and speed of inspection while reducing production time and associated labour costs. Traditionally, the robot tool path is either taught or programmed manually. Automation of NDT tool path generation, as presented in this paper, offers further significant time reduction, and an increase in the flexibility of inspection planning compared to manual robot teaching and programming. Moreover, such a solution helps to maintain a controlled probe orientation with respect to the scanned surface, and thus which can dramatically reducing lift-off noise. In this work we present the reverse engineering of complex shape test-pieces which have no CAD documentation, and the computer-aided tool scan path generation of such test-pieces as deployed by means of six-axis KUKA robotic arms. Both the use of commercial software and a custom MATLAB toolbox are explored. The tool-paths generated by commercial software are used for robotic scanning of a titanium fan blade by means of Swept Frequency Eddy Current (SFEC) method. Investigations for the future potential for integrating robotic NDT and in-line metrology are also presented. © (2013) by the British Institute of Non-Destructive Testing. All rights reserved.

Computer-aided tool path generation for robotic Non-Destructive Inspection

Mineo C;
2013

Abstract

Compared to manual Non-Destructive Testing (NDT) for inspection of engineering components, automated robotic deployment of the same NDT techniques offers an increase in accuracy, precision and speed of inspection while reducing production time and associated labour costs. Traditionally, the robot tool path is either taught or programmed manually. Automation of NDT tool path generation, as presented in this paper, offers further significant time reduction, and an increase in the flexibility of inspection planning compared to manual robot teaching and programming. Moreover, such a solution helps to maintain a controlled probe orientation with respect to the scanned surface, and thus which can dramatically reducing lift-off noise. In this work we present the reverse engineering of complex shape test-pieces which have no CAD documentation, and the computer-aided tool scan path generation of such test-pieces as deployed by means of six-axis KUKA robotic arms. Both the use of commercial software and a custom MATLAB toolbox are explored. The tool-paths generated by commercial software are used for robotic scanning of a titanium fan blade by means of Swept Frequency Eddy Current (SFEC) method. Investigations for the future potential for integrating robotic NDT and in-line metrology are also presented. © (2013) by the British Institute of Non-Destructive Testing. All rights reserved.
2013
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
9781629939933
Path-planning
Robotics
Inspection
Non-destructive testing
Complex geometries
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact