This paper aims at building a variational approach to the dynamics of discrete topological singularities in two dimensions, based on I"-convergence. We consider discrete systems, described by scalar functions defined on a square lattice and governed by periodic interaction potentials. Our main motivation comes from XY spin systems, described by the phase parameter, and screw dislocations, described by the displacement function. For these systems, we introduce a discrete notion of vorticity. As the lattice spacing tends to zero we derive the first order I"-limit of the free energy which is referred to as renormalized energy and describes the interaction of vortices. As a byproduct of this analysis, we show that such systems exhibit increasingly many metastable configurations of singularities. Therefore, we propose a variational approach to the depinning and dynamics of discrete vortices, based on minimizing movements. We show that, letting first the lattice spacing and then the time step of the minimizing movements tend to zero, the vortices move according with the gradient flow of the renormalized energy, as in the continuous Ginzburg-Landau framework.

Metastability and Dynamics of Discrete Topological Singularities in Two Dimensions: A Gamma-Convergence Approach

De Luca Lucia;
2014

Abstract

This paper aims at building a variational approach to the dynamics of discrete topological singularities in two dimensions, based on I"-convergence. We consider discrete systems, described by scalar functions defined on a square lattice and governed by periodic interaction potentials. Our main motivation comes from XY spin systems, described by the phase parameter, and screw dislocations, described by the displacement function. For these systems, we introduce a discrete notion of vorticity. As the lattice spacing tends to zero we derive the first order I"-limit of the free energy which is referred to as renormalized energy and describes the interaction of vortices. As a byproduct of this analysis, we show that such systems exhibit increasingly many metastable configurations of singularities. Therefore, we propose a variational approach to the depinning and dynamics of discrete vortices, based on minimizing movements. We show that, letting first the lattice spacing and then the time step of the minimizing movements tend to zero, the vortices move according with the gradient flow of the renormalized energy, as in the continuous Ginzburg-Landau framework.
2014
Istituto Applicazioni del Calcolo ''Mauro Picone''
topological singularities
gamma-convergence
gradient flow
File in questo prodotto:
File Dimensione Formato  
prod_433235-doc_154709.pdf

accesso aperto

Descrizione: Metastability and Dynamics of Discrete Topological Singularities in Two Dimensions: A Gamma-Convergence Approach
Tipologia: Documento in Pre-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 559.42 kB
Formato Adobe PDF
559.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/385853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 55
social impact