The development of cheap and efficient catalysts for the oxygen evolution reaction (OER) plays a critical role for sustainable energy conversion and storage. Herein, we report on Mn2O3-based systems supported on nickel foams and functionalized with first-row transition-metal (Fe, Co, Ni) oxide nanoparticles (NPs) as OER electrocatalysts in alkaline media, fabricated by a plasma-assisted process. The remarkable substrate porosity and high Mn2O3 active area, due to the quasi-one-dimensional nano-organization, enabled an efficient ultradispersion of Fe2O3, Co3O4, and NiO NPs into Mn2O3 and an intimate oxide-oxide interfacial contact, enhancing thus charge carrier transport and facilitating reactants and products diffusion. Among the developed systems, Fe2O3-Mn2O3 yielded the highest electrocatalytic activity, corresponding to a low overpotential of ~350 mV at 10 mA × cm-2 and a Tafel slope of 70 mV × dec-1, allowing high current density values. The obtained performances, discussed in relation to the material properties, are superior to almost all the state-of-the-art manganese oxide catalysts and compare favorably with various noble-metal-based systems, paving the way to additional activity improvements via compositional and interfacial engineering.

Quasi-1D Mn2O3 nanostructures functionalized with first-row transition-metal oxides as oxygen evolution catalysts

Maccato C.
;
Gasparotto A.;Barreca D.
2020

Abstract

The development of cheap and efficient catalysts for the oxygen evolution reaction (OER) plays a critical role for sustainable energy conversion and storage. Herein, we report on Mn2O3-based systems supported on nickel foams and functionalized with first-row transition-metal (Fe, Co, Ni) oxide nanoparticles (NPs) as OER electrocatalysts in alkaline media, fabricated by a plasma-assisted process. The remarkable substrate porosity and high Mn2O3 active area, due to the quasi-one-dimensional nano-organization, enabled an efficient ultradispersion of Fe2O3, Co3O4, and NiO NPs into Mn2O3 and an intimate oxide-oxide interfacial contact, enhancing thus charge carrier transport and facilitating reactants and products diffusion. Among the developed systems, Fe2O3-Mn2O3 yielded the highest electrocatalytic activity, corresponding to a low overpotential of ~350 mV at 10 mA × cm-2 and a Tafel slope of 70 mV × dec-1, allowing high current density values. The obtained performances, discussed in relation to the material properties, are superior to almost all the state-of-the-art manganese oxide catalysts and compare favorably with various noble-metal-based systems, paving the way to additional activity improvements via compositional and interfacial engineering.
2020
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Mn2O3
Fe2O3
Co3O4
NiO
plasma-assisted fabrication
oxygen evolution reaction
File in questo prodotto:
File Dimensione Formato  
prod_439524-doc_157691.pdf

solo utenti autorizzati

Descrizione: Quasi-1D Mn2O3 nanostructures functionalized with first-row transition-metal oxides as oxygen evolution catalysts
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 9.78 MB
Formato Adobe PDF
9.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_439524-doc_159134.pdf

solo utenti autorizzati

Descrizione: supporting information
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 555.65 kB
Formato Adobe PDF
555.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper_ACS_Nanomat_Mn2O3.pdf

Open Access dal 03/09/2021

Descrizione: main paper post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri
ACS_Nanomat_Mn2O3_ESI.pdf

Open Access dal 04/09/2021

Descrizione: supporting information post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 694.43 kB
Formato Adobe PDF
694.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/391448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 24
social impact