Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy (MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity MnxOy dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of MnxOy phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn2O3 system, a current density of ca. 5 mA cm-2 at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm-2. Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.

Au-manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution: a chemico-physical investigation

Gasparotto A
;
Barreca D
;
Maccato C
2020

Abstract

Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy (MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity MnxOy dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of MnxOy phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn2O3 system, a current density of ca. 5 mA cm-2 at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm-2. Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.
2020
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
manganese oxides
oxygen evolution reaction
strong metal-support interaction
File in questo prodotto:
File Dimensione Formato  
prod_439528-doc_191945.pdf

solo utenti autorizzati

Descrizione: Supporting Information
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_439528-doc_157694.pdf

solo utenti autorizzati

Descrizione: Au-Manganese Oxide Nanostructures by a Plasma-Assisted Process as Electrocatalysts for Oxygen Evolution...
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper_MnxOy_Adv_Sust_Syst.pdf

non disponibili

Descrizione: main paper post-print
Tipologia: Documento in Post-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ESI_MnxOy_Adv_Sust_Syst.pdf

non disponibili

Descrizione: supporting information post-print
Tipologia: Documento in Post-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/391452
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact