Biowaxes synthesized from vegetable fatty acids are an alternative to petrochemical paraffins. A simple way of access to these compounds involves Fisher-type esterification of long-chain acids and alcohols under acidic conditions, but long reaction times and harsh conditions are commonly required. In this study, for the first time in the literature, biowax esters are prepared under flow conditions cutting dramatically both reaction times (from 12 h to 30 min) and temperature conditions, with respect to batch procedures (from 90-120 °C to 55 °C). This approach brings substantial improvements to the biowax synthesis process from an economic and environmental point of view, thus making the method up-scalable to the industrial level.

Preparation of biowax esters in continuous flow conditions

Casiello M;Fusco C;Nacci A;D'Accolti L
2019

Abstract

Biowaxes synthesized from vegetable fatty acids are an alternative to petrochemical paraffins. A simple way of access to these compounds involves Fisher-type esterification of long-chain acids and alcohols under acidic conditions, but long reaction times and harsh conditions are commonly required. In this study, for the first time in the literature, biowax esters are prepared under flow conditions cutting dramatically both reaction times (from 12 h to 30 min) and temperature conditions, with respect to batch procedures (from 90-120 °C to 55 °C). This approach brings substantial improvements to the biowax synthesis process from an economic and environmental point of view, thus making the method up-scalable to the industrial level.
2019
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
biowaxes
fatty acids
flow reactions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/391607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact