The design of eco-friendly electrocatalysts for ethanol valorization isan open challenge towards sustainable hydrogen production. Hereinwe present an original fabrication route to effective electrocatalystsfor the ethanol oxidation reaction (EOR). In particular, hierarchicalMnO2 nanostructures are grown on high-area nickel foamscaffolds bya plasma-assisted strategy and functionalized with low amounts ofoptimally dispersed Au nanoparticles. This strategy leads to catalystswith a unique morphology, designed to enhance reactant-surfacecontacts and maximize active site utilization. The developed nanoarchitecturesshow superior performances for ethanol oxidation inalkaline media. We reveal that Au decoration boosts MnO2 catalyticactivity by inducing pre-dissociation and pre-oxidation of the adsorbedethanol molecules. This evidence validates our strategy as aneffective route for the development of green electrocatalysts forefficient electrical-to-chemical energy conversion.
Engineering Au/MnO2 hierarchical nanoarchitectures for ethanol electrochemical valorization
Maccato C.;Gasparotto A.;Barreca D.
2020
Abstract
The design of eco-friendly electrocatalysts for ethanol valorization isan open challenge towards sustainable hydrogen production. Hereinwe present an original fabrication route to effective electrocatalystsfor the ethanol oxidation reaction (EOR). In particular, hierarchicalMnO2 nanostructures are grown on high-area nickel foamscaffolds bya plasma-assisted strategy and functionalized with low amounts ofoptimally dispersed Au nanoparticles. This strategy leads to catalystswith a unique morphology, designed to enhance reactant-surfacecontacts and maximize active site utilization. The developed nanoarchitecturesshow superior performances for ethanol oxidation inalkaline media. We reveal that Au decoration boosts MnO2 catalyticactivity by inducing pre-dissociation and pre-oxidation of the adsorbedethanol molecules. This evidence validates our strategy as aneffective route for the development of green electrocatalysts forefficient electrical-to-chemical energy conversion.File | Dimensione | Formato | |
---|---|---|---|
prod_432652-doc_154581.pdf
accesso aperto
Descrizione: Supporting Information - post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
prod_432652-doc_154580.pdf
accesso aperto
Descrizione: paper post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
857.51 kB
Formato
Adobe PDF
|
857.51 kB | Adobe PDF | Visualizza/Apri |
reprint_MnO2_JMCA.pdf
solo utenti autorizzati
Descrizione: reprint main paper
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
963.65 kB
Formato
Adobe PDF
|
963.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
reprint_MnO2_JMCA_ESI.pdf
solo utenti autorizzati
Descrizione: reprint supporting information
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.