The design of eco-friendly electrocatalysts for ethanol valorization isan open challenge towards sustainable hydrogen production. Hereinwe present an original fabrication route to effective electrocatalystsfor the ethanol oxidation reaction (EOR). In particular, hierarchicalMnO2 nanostructures are grown on high-area nickel foamscaffolds bya plasma-assisted strategy and functionalized with low amounts ofoptimally dispersed Au nanoparticles. This strategy leads to catalystswith a unique morphology, designed to enhance reactant-surfacecontacts and maximize active site utilization. The developed nanoarchitecturesshow superior performances for ethanol oxidation inalkaline media. We reveal that Au decoration boosts MnO2 catalyticactivity by inducing pre-dissociation and pre-oxidation of the adsorbedethanol molecules. This evidence validates our strategy as aneffective route for the development of green electrocatalysts forefficient electrical-to-chemical energy conversion.

Engineering Au/MnO2 hierarchical nanoarchitectures for ethanol electrochemical valorization

Maccato C.;Gasparotto A.;Barreca D.
2020

Abstract

The design of eco-friendly electrocatalysts for ethanol valorization isan open challenge towards sustainable hydrogen production. Hereinwe present an original fabrication route to effective electrocatalystsfor the ethanol oxidation reaction (EOR). In particular, hierarchicalMnO2 nanostructures are grown on high-area nickel foamscaffolds bya plasma-assisted strategy and functionalized with low amounts ofoptimally dispersed Au nanoparticles. This strategy leads to catalystswith a unique morphology, designed to enhance reactant-surfacecontacts and maximize active site utilization. The developed nanoarchitecturesshow superior performances for ethanol oxidation inalkaline media. We reveal that Au decoration boosts MnO2 catalyticactivity by inducing pre-dissociation and pre-oxidation of the adsorbedethanol molecules. This evidence validates our strategy as aneffective route for the development of green electrocatalysts forefficient electrical-to-chemical energy conversion.
2020
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Au/MnO2
hierarchical nanoarchitectures
ethanol electrochemical valorization
plasma assisted chemical vapor deposition
Sputtering
File in questo prodotto:
File Dimensione Formato  
prod_432652-doc_154581.pdf

accesso aperto

Descrizione: Supporting Information - post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri
prod_432652-doc_154580.pdf

accesso aperto

Descrizione: paper post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 857.51 kB
Formato Adobe PDF
857.51 kB Adobe PDF Visualizza/Apri
reprint_MnO2_JMCA.pdf

solo utenti autorizzati

Descrizione: reprint main paper
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 963.65 kB
Formato Adobe PDF
963.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
reprint_MnO2_JMCA_ESI.pdf

solo utenti autorizzati

Descrizione: reprint supporting information
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/391990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 28
social impact