Some classes of nematic liquid crystals can be driven through turbulent regimes when forced by an external electric field. In contrast to isotropic fluids, a turbulent nematic exhibits a transition to a stochastic regime that is characterised by a network of topological defects. We study the deformations arising after the electric field has been switched-off. In contrast to the turbulent regime, the relaxation of this topological-defect regime involves the annihilation of an interlacement of defect lines. We show that these defect lines separate regions of the nematic having topologically non-equivalent textures.
Topologically non-equivalent textures generated by the nematic electrohydrodynamics
Pucci G;Carbone F;Lombardo G;
2019
Abstract
Some classes of nematic liquid crystals can be driven through turbulent regimes when forced by an external electric field. In contrast to isotropic fluids, a turbulent nematic exhibits a transition to a stochastic regime that is characterised by a network of topological defects. We study the deformations arising after the electric field has been switched-off. In contrast to the turbulent regime, the relaxation of this topological-defect regime involves the annihilation of an interlacement of defect lines. We show that these defect lines separate regions of the nematic having topologically non-equivalent textures.File | Dimensione | Formato | |
---|---|---|---|
prod_402302-doc_139880.pdf
solo utenti autorizzati
Descrizione: Topologically non-equivalent textures generated by the nematic electrohydrodynamics
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.