The present study focuses on the estimation of the air quality impact of an oil/gas pre-treatment plant, the Centro Olio Val d'Agri (COVA), in view of a more comprehensive epidemiological study regarding the inhabitants of two small towns settled in close proximity of the plant. We used the RMS (RAMS/MIRS/SPRAY) modeling system to estimate the ground level concentration of SO2, NOx, and CO as a result of the incineration of residues and electric and thermic power generation. Simulations were run for 1 meteorological year. The spatial interpolation of measured H2S, proxy of the other types of emission, allowed for a more detailed picture of the plant impact. The spatial correlation between estimated NOx and SO2 and measured H2S strengthens the hypothesis of exploiting NOx maps as a proxy for the population exposure to the mixture of industry-emitted pollutants. Overall results suggest that the plant affects the inhabitants of the two towns differently. Furthermore, the simulations show that the area impacted by the plumes is much larger than that of the two municipalities within range of the plant, suggesting both the need to extend the monitoring area and to include the population living in that area in the health study.

Modeling air quality impact of pollutants emitted by an oil/gas plant in complex terrain in view of a health impact assessment

Mangia Cristina;Bisignano Andrea;Cervino Marco;Mortarini Luca;Castelli Silvia Trini
2019

Abstract

The present study focuses on the estimation of the air quality impact of an oil/gas pre-treatment plant, the Centro Olio Val d'Agri (COVA), in view of a more comprehensive epidemiological study regarding the inhabitants of two small towns settled in close proximity of the plant. We used the RMS (RAMS/MIRS/SPRAY) modeling system to estimate the ground level concentration of SO2, NOx, and CO as a result of the incineration of residues and electric and thermic power generation. Simulations were run for 1 meteorological year. The spatial interpolation of measured H2S, proxy of the other types of emission, allowed for a more detailed picture of the plant impact. The spatial correlation between estimated NOx and SO2 and measured H2S strengthens the hypothesis of exploiting NOx maps as a proxy for the population exposure to the mixture of industry-emitted pollutants. Overall results suggest that the plant affects the inhabitants of the two towns differently. Furthermore, the simulations show that the area impacted by the plumes is much larger than that of the two municipalities within range of the plant, suggesting both the need to extend the monitoring area and to include the population living in that area in the health study.
2019
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Lecce
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Torino
Exposure assessment
Oil/gas pre-treatment
Dispersion modeling
Complex terrain
File in questo prodotto:
File Dimensione Formato  
prod_410467-doc_169938.pdf

solo utenti autorizzati

Descrizione: Mangia_et_al_AQAH_2019.pdf
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 10 MB
Formato Adobe PDF
10 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/393357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact