At ambient conditions, alkali metals adopt the body centered cubic structure, while if compressed up to tens of GPa and above, they exhibit complex low-symmetry modifications, due to the density-driven transition of the valence electrons from the s state to states of higher angular momentum. These high-pressure, low-symmetry phases, whose unit cells may include up to tens of atoms, allow rich Raman activity, which was previously observed only in lighter alkalis Na and Li. Here we report an extensive study of the optical phonons of highly dense Rb up to 100 GPa in diamond anvil cells, conducted by challenging experimental Raman spectroscopy measurements and ab initio computer simulations. The relative (relative to the normal condition value) density behavior of Raman frequencies of Rb is compared to that of Na and Li, once the frequencies of the two light alkali elements have been rescaled by (M_Na/M_Rb )^0.5 and (M_Li/M_Rb)^0.5, respectively, where M_Na, M_Li, and M_Rb are the atomic masses of the here considered alkali elements. Importantly, while the rescaled density behaviors of Na and Li agree with each other, Rb significantly differs, which highlights the different nature of the valence electron transition being of the s-d and of the s-p type in heavy and light alkali metals, respectively, a result that calls for further similar investigations of K and Cs.

High-pressure vibrational properties of dense rubidium

Santoro M;Colognesi D;Ulivi L;Gorelli F A
2018

Abstract

At ambient conditions, alkali metals adopt the body centered cubic structure, while if compressed up to tens of GPa and above, they exhibit complex low-symmetry modifications, due to the density-driven transition of the valence electrons from the s state to states of higher angular momentum. These high-pressure, low-symmetry phases, whose unit cells may include up to tens of atoms, allow rich Raman activity, which was previously observed only in lighter alkalis Na and Li. Here we report an extensive study of the optical phonons of highly dense Rb up to 100 GPa in diamond anvil cells, conducted by challenging experimental Raman spectroscopy measurements and ab initio computer simulations. The relative (relative to the normal condition value) density behavior of Raman frequencies of Rb is compared to that of Na and Li, once the frequencies of the two light alkali elements have been rescaled by (M_Na/M_Rb )^0.5 and (M_Li/M_Rb)^0.5, respectively, where M_Na, M_Li, and M_Rb are the atomic masses of the here considered alkali elements. Importantly, while the rescaled density behaviors of Na and Li agree with each other, Rb significantly differs, which highlights the different nature of the valence electron transition being of the s-d and of the s-p type in heavy and light alkali metals, respectively, a result that calls for further similar investigations of K and Cs.
2018
Alta pressione
simulazioni ab initio
dinamica reticolare
spettroscopia Raman
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact