Metriplectic dynamics couple a Poisson bracket of the Hamiltonian description with a kind of metric bracket, for describing systems with both Hamiltonian and dissipative components. The construction builds in asymptotic convergence to a preselected equilibrium state. Phenomena such as friction, electric resistivity, thermal conductivity and collisions in kinetic theories all fit within this framework. In this paper an application of metriplectic dynamics is presented that is of interest for the theory of control: a suitably chosen torque, expressed through a metriplectic extension of its "natural" Poisson algebra, an algebra obtained by reduction of a canonical Hamiltonian system, is applied to a free rigid body. On a practical ground, the effect is to drive the body to align its angular velocity to rotation about a stable principal axis of inertia, while conserving its kinetic energy in the process. On theoretical grounds, this example provides a class of non-Hamiltonian torques that can be added to the canonical Hamiltonian description of the free rigid body and reduce to metriplectic dissipation. In the canonical description these torques provide convergence to a higher dimensional attractor. The method of construction of such torques can be extended to other dynamical systems describing "machines" with non-Hamiltonian motion having attractors.

Metriplectic torque for rotation control of a rigid body

Materassi, Massimo;
2018

Abstract

Metriplectic dynamics couple a Poisson bracket of the Hamiltonian description with a kind of metric bracket, for describing systems with both Hamiltonian and dissipative components. The construction builds in asymptotic convergence to a preselected equilibrium state. Phenomena such as friction, electric resistivity, thermal conductivity and collisions in kinetic theories all fit within this framework. In this paper an application of metriplectic dynamics is presented that is of interest for the theory of control: a suitably chosen torque, expressed through a metriplectic extension of its "natural" Poisson algebra, an algebra obtained by reduction of a canonical Hamiltonian system, is applied to a free rigid body. On a practical ground, the effect is to drive the body to align its angular velocity to rotation about a stable principal axis of inertia, while conserving its kinetic energy in the process. On theoretical grounds, this example provides a class of non-Hamiltonian torques that can be added to the canonical Hamiltonian description of the free rigid body and reduce to metriplectic dissipation. In the canonical description these torques provide convergence to a higher dimensional attractor. The method of construction of such torques can be extended to other dynamical systems describing "machines" with non-Hamiltonian motion having attractors.
2018
Istituto dei Sistemi Complessi - ISC
Adaptive systems
motion control
periodic systems design
metriplectic algebra
File in questo prodotto:
File Dimensione Formato  
prod_411175-doc_161142.pdf

solo utenti autorizzati

Descrizione: Metriplectic torque for rotation control of a rigid body
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact