In the last few years, high-resolution imaging of vineyards, obtained by unmanned aerial vehicle recognitions, has provided new opportunities to obtain valuable information for precision farming applications. While available semi-automatic image processing algorithms are now able to detect parcels and extract vine rows from aerial images, the identification of single plant inside the rows is a problem still unaddressed. This study presents a new methodology for the segmentation of vine rows in virtual shapes, each representing a real plant. From the virtual shapes, an extensive set of features is discussed, extracted and coupled to a statistical classifier, to evaluate its performance in missing plant detection within a vineyard parcel. Passing from continuous images to a discrete set of individual plants results in a crucial simplification of the statistical investigation of the problem.

Individual plant definition and missing plant characterization in vineyards from high-resolution UAV imagery

Primicerio Jacopo;Crisci Alfonso;Genesio Lorenzo;Vaccari Francesco Primo
2017

Abstract

In the last few years, high-resolution imaging of vineyards, obtained by unmanned aerial vehicle recognitions, has provided new opportunities to obtain valuable information for precision farming applications. While available semi-automatic image processing algorithms are now able to detect parcels and extract vine rows from aerial images, the identification of single plant inside the rows is a problem still unaddressed. This study presents a new methodology for the segmentation of vine rows in virtual shapes, each representing a real plant. From the virtual shapes, an extensive set of features is discussed, extracted and coupled to a statistical classifier, to evaluate its performance in missing plant detection within a vineyard parcel. Passing from continuous images to a discrete set of individual plants results in a crucial simplification of the statistical investigation of the problem.
2017
Istituto di Biometeorologia - IBIMET - Sede Firenze
Precision viticulture
UAV
missing plants
plant detection
remote sensing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact