When applied in agriculture, the solid carbonaceous residue of anoxic thermochemical conversion of biomass (biochar) has variable effects on soil, crop yields, and climate mitigation. Biochar can be added to soil as powder or as pellets. While powdered forms have demonstrated effects on crop yields, they may release coarse and fine particulate that can be transported into the atmosphere during production, packaging, storage, transport, and distribution. Biochar weathering and wind erosion may also cause the release of particles. Particulate matter (PM) released from biochar may have negative effects on human health and increase the atmospheric burden of shortwave absorbing black carbon aerosols with non-negligible effects on atmospheric radiative forcing. Pelletizing feedstock before the thermochemical conversion and moistening of biochar are expected to reduce the emission of PM in the processing and post-processing phases while also increasing the mean residence time of Carbon in soils. The impact of biochar formulation (pellet and non-pellet) on the release of coarse and fine particulate in wet and dry conditions was assessed in a laboratory experiment. In parallel, the effects of pellet and non-pellet formulations on growth and yield of processing tomato plants were tested in a pot experiment. Results show that pelletization and moistening substantially reduce the amount of fine particles released and are therefore practices that should be adopted to maximize the mitigation potential of biochar. A reduction of tomato yield was observed in pellet treatment, suggesting that the higher interface area of powdered biochar may boost productivity in the short term. This work points to the existence of a tradeoff between the short-term maximization of agronomic benefits and the minimization of harmful effects due to particulate release.

Impact of Biochar Formulation on the Release of Particulate Matter and on Short-Term Agronomic Performance

Maienza Anita;Genesio Lorenzo;Pusceddu Emanuela;Vaccari Francesco Primo
2017

Abstract

When applied in agriculture, the solid carbonaceous residue of anoxic thermochemical conversion of biomass (biochar) has variable effects on soil, crop yields, and climate mitigation. Biochar can be added to soil as powder or as pellets. While powdered forms have demonstrated effects on crop yields, they may release coarse and fine particulate that can be transported into the atmosphere during production, packaging, storage, transport, and distribution. Biochar weathering and wind erosion may also cause the release of particles. Particulate matter (PM) released from biochar may have negative effects on human health and increase the atmospheric burden of shortwave absorbing black carbon aerosols with non-negligible effects on atmospheric radiative forcing. Pelletizing feedstock before the thermochemical conversion and moistening of biochar are expected to reduce the emission of PM in the processing and post-processing phases while also increasing the mean residence time of Carbon in soils. The impact of biochar formulation (pellet and non-pellet) on the release of coarse and fine particulate in wet and dry conditions was assessed in a laboratory experiment. In parallel, the effects of pellet and non-pellet formulations on growth and yield of processing tomato plants were tested in a pot experiment. Results show that pelletization and moistening substantially reduce the amount of fine particles released and are therefore practices that should be adopted to maximize the mitigation potential of biochar. A reduction of tomato yield was observed in pellet treatment, suggesting that the higher interface area of powdered biochar may boost productivity in the short term. This work points to the existence of a tradeoff between the short-term maximization of agronomic benefits and the minimization of harmful effects due to particulate release.
2017
Istituto di Biometeorologia - IBIMET - Sede Firenze
biochar formulation
pelletization
yield effect
particulate matter
processing tomato
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact