Expanding the activity of wide bandgap semiconductors from the UV into the visible range has become a central goal for their application in green solar photocatalysis. The hybrid plasmonic/semiconductor system, based on silver nanoparticles (Ag NPs) embedded in a film of CeO2, is an example of a functional material developed with this aim. In this work, we take advantage of the chemical sensitivity of free electron laser (FEL) time-resolved soft X-ray absorption spectroscopy (TRXAS) to investigate the electron transfer process from the Ag NPs to the CeO2 film generated by the NPs plasmonic resonance photoexcitation. Ultrafast changes (<200 fs) of the Ce N4,5 absorption edge allowed us to conclude that the excited Ag NPs transfer electrons to the Ce atoms of the CeO2 film through a highly efficient electron-based mechanism. These results demonstrate the potential of FEL-based TRXAS measurements for the characterization of energy transfer in novel hybrid plasmonic/semiconductor materials.

Ultrafast dynamics of plasmon-mediated charge transfer in Ag@CeO2 studied by free electron laser time-resolved x-ray absorption spectroscopy

Spurio E;Catone D;O'Keeffe P;Turchini S;Benedetti S;Vikatakavi A;D'Addato S;Nannarone S;Boscherini F;Luches P
2021

Abstract

Expanding the activity of wide bandgap semiconductors from the UV into the visible range has become a central goal for their application in green solar photocatalysis. The hybrid plasmonic/semiconductor system, based on silver nanoparticles (Ag NPs) embedded in a film of CeO2, is an example of a functional material developed with this aim. In this work, we take advantage of the chemical sensitivity of free electron laser (FEL) time-resolved soft X-ray absorption spectroscopy (TRXAS) to investigate the electron transfer process from the Ag NPs to the CeO2 film generated by the NPs plasmonic resonance photoexcitation. Ultrafast changes (<200 fs) of the Ce N4,5 absorption edge allowed us to conclude that the excited Ag NPs transfer electrons to the Ce atoms of the CeO2 film through a highly efficient electron-based mechanism. These results demonstrate the potential of FEL-based TRXAS measurements for the characterization of energy transfer in novel hybrid plasmonic/semiconductor materials.
2021
Istituto Officina dei Materiali - IOM -
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
time-resolved XAS
FEL
plasmonic nanoparticles
CeO2
ultrafast charge transfer
File in questo prodotto:
File Dimensione Formato  
acs.nanolett.0c04547 Fermi.pdf

accesso aperto

Descrizione: Article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/394943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 20
social impact