Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders, characterized by a progressive sensory neuropathy often complicated by ulcers and amputations, with variable motor and autonomic involvement. Several pathways have been implicated in the pathogenesis of neuronal degeneration in HSAN, while recent observations point to an emerging role of cytoskeleton organization and function. Here, we report novel biallelic mutations in the DST gene encoding dystonin, a large cytolinker protein of the plakin family, in an adult form of HSAN type VI. Affected individuals harbored the premature termination codon variant p.(Lys4330*) in trans with the p.(Ala203Glu) change affecting a highly conserved residue in an isoform-specific N-terminal region of dystonin. Functional studies showed defects in actin cytoskeleton organization and consequent delayed cell adhesion, spreading and migration, while recombinant p.Ala203Glu dystonin loses the ability to bind actin. Our data aid in the clinical and molecular delineation of HSAN-VI and suggest a central role for cell-motility and cytoskeletal defects in its pathogenesis possibly interfering with the neuronal outgrowth and guidance processes.

Recessive mutations in the neuronal isoforms of DST, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI

Gianluca Cestra;
2018

Abstract

Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders, characterized by a progressive sensory neuropathy often complicated by ulcers and amputations, with variable motor and autonomic involvement. Several pathways have been implicated in the pathogenesis of neuronal degeneration in HSAN, while recent observations point to an emerging role of cytoskeleton organization and function. Here, we report novel biallelic mutations in the DST gene encoding dystonin, a large cytolinker protein of the plakin family, in an adult form of HSAN type VI. Affected individuals harbored the premature termination codon variant p.(Lys4330*) in trans with the p.(Ala203Glu) change affecting a highly conserved residue in an isoform-specific N-terminal region of dystonin. Functional studies showed defects in actin cytoskeleton organization and consequent delayed cell adhesion, spreading and migration, while recombinant p.Ala203Glu dystonin loses the ability to bind actin. Our data aid in the clinical and molecular delineation of HSAN-VI and suggest a central role for cell-motility and cytoskeletal defects in its pathogenesis possibly interfering with the neuronal outgrowth and guidance processes.
2018
Istituto di Biologia e Patologia Molecolari - IBPM
DST; HSAN; cell adhesion; cell migration; cytoskeleton; hereditary sensory and autonomic neuropathies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/395376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact