A three-dimensional common feature pharmacophore model was developed using the X-ray structure of RT/non-nucleoside inhibitor (NNRTI) complexes. Starting from the pharmacophore hypothesis and the structure of the lead compound TBZ, new NNRTIs were designed and synthesized, having the benzimidazol-2-one system as a scaffold. Docking experiments showed that these molecules docked in a position and orientation similar to that of known inhibitors. Biological testing confirmed that our strategy was successful in searching for new leads as NNRTIs.
Computational strategies in discovering novel non-nucleoside inhibitors of HIV-1 RT.
Maga G;
2005
Abstract
A three-dimensional common feature pharmacophore model was developed using the X-ray structure of RT/non-nucleoside inhibitor (NNRTI) complexes. Starting from the pharmacophore hypothesis and the structure of the lead compound TBZ, new NNRTIs were designed and synthesized, having the benzimidazol-2-one system as a scaffold. Docking experiments showed that these molecules docked in a position and orientation similar to that of known inhibitors. Biological testing confirmed that our strategy was successful in searching for new leads as NNRTIs.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


