The Sicilian grape cultivar 'Nero d'Avola' is among the oldest and most cultivated in the island, taking part in the production of several red wines exported worldwide, including DOC wines (Etna Rosso and Cerasuolo di Vittoria). Due to the ancient origin and repeated clonally propagation of the cultivar, phenotypic variability has been observed. Clone identification in this important cultivar has so far relied on phenotypic and chemical traits analyses, often affected by environmental conditions. Genetic markers, such as microsatellites, are particularly useful for cultivar identification, parentage testing, pedigree reconstruction and population structure studies. In the present paper, microsatellites were used to analyze the intra-varietal genetic diversity among 118 plants of 'Nero d'Avola', collected in 30 vineyards displaced in different areas of Sicily. Out of 22 microsatellites, 11 showed polymorphism among samples and 15 different phylogenetic groups were identified. Results show that 'Nero d'Avola' actually comprises different genetic profiles, although most of clones share a common origin.
Intra-varietal genetic diversity of the grapevine (Vitis vinifera L.) cultivar Nero d Avola as revealed by microsatellite markers
Carimi F;Mercati F;De Michele R;
2011
Abstract
The Sicilian grape cultivar 'Nero d'Avola' is among the oldest and most cultivated in the island, taking part in the production of several red wines exported worldwide, including DOC wines (Etna Rosso and Cerasuolo di Vittoria). Due to the ancient origin and repeated clonally propagation of the cultivar, phenotypic variability has been observed. Clone identification in this important cultivar has so far relied on phenotypic and chemical traits analyses, often affected by environmental conditions. Genetic markers, such as microsatellites, are particularly useful for cultivar identification, parentage testing, pedigree reconstruction and population structure studies. In the present paper, microsatellites were used to analyze the intra-varietal genetic diversity among 118 plants of 'Nero d'Avola', collected in 30 vineyards displaced in different areas of Sicily. Out of 22 microsatellites, 11 showed polymorphism among samples and 15 different phylogenetic groups were identified. Results show that 'Nero d'Avola' actually comprises different genetic profiles, although most of clones share a common origin.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.