Nuclear lamina components have long been regarded as scaffolding proteins, forming adense fibrillar structure necessary for the maintenance of the nucleus shape in all the animal kingdom. More recently, mutations, aberrant localisation and deregulation of these proteins have beenlinked to several diseases, including cancer. Using publicly available data we found that the increased expression levels of the nuclear protein Lamin A/C correlate with a reduced overall survivalin The Cancer Genome Atlas Research Network (TCGA) patients affected by glioblastoma multiforme (GBM). We show that the expression of the LMNA gene is linked to the enrichment of cancerrelated pathways, particularly pathways related to cell adhesion and cell migration. Mimicking themodulation of LMNA in a GBM preclinical cancer model, we confirmed both in vitro and in vivothat the increased expression of LMNA is associated with an increased aggressiveness and tumorigenicity. In addition, delving into the possible mechanism behind LMNA-induced GBM aggressiveness and tumorigenicity, we found that the mTORC2 component, Rictor, plays a central role inmediating these effects.
Role of Lamin A/C as Candidate Biomarker of Aggressiveness and Tumorigenicity in Glioblastoma Multiforme
Laura Vilardo;Chiara Di Pietro;Ferdinando Scavizzi;Francesca De Santa;Marcello Raspa;Igea D'Agnano
2021
Abstract
Nuclear lamina components have long been regarded as scaffolding proteins, forming adense fibrillar structure necessary for the maintenance of the nucleus shape in all the animal kingdom. More recently, mutations, aberrant localisation and deregulation of these proteins have beenlinked to several diseases, including cancer. Using publicly available data we found that the increased expression levels of the nuclear protein Lamin A/C correlate with a reduced overall survivalin The Cancer Genome Atlas Research Network (TCGA) patients affected by glioblastoma multiforme (GBM). We show that the expression of the LMNA gene is linked to the enrichment of cancerrelated pathways, particularly pathways related to cell adhesion and cell migration. Mimicking themodulation of LMNA in a GBM preclinical cancer model, we confirmed both in vitro and in vivothat the increased expression of LMNA is associated with an increased aggressiveness and tumorigenicity. In addition, delving into the possible mechanism behind LMNA-induced GBM aggressiveness and tumorigenicity, we found that the mTORC2 component, Rictor, plays a central role inmediating these effects.File | Dimensione | Formato | |
---|---|---|---|
prod_457088-doc_177220.pdf
accesso aperto
Descrizione: published paper in Biomedicines
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.