In framework of the thermochemical energy storage (TCES) in concentrating solar power (CSP) applications, great attention is focused on the SrCO/SrO system, which is characterized by remarkably high theoretical volumetric energy density (4 GJ m) and working temperatures (1200 °C). It has been shown that the incorporation of AlO in the SrO/SrCO system can successfully hinder the sintering and agglomeration phenomena, thus improving the performances of the system. Aiming at providing useful information for the design, simulation and scale up of a reactor for the energy storage, besides the multicycle carbonation conversion, the evaluation of the reaction kinetics is crucial. Thus, in this work, the kinetics of the carbonation of a SrO-AlO composite (34%wt of AlO) for TCES-CSP has been investigated for the first time using a two-stage kinetic model. In particular, tests have been performed in a thermogravimetric analyzer at operating conditions relevant for TCES, namely at 1 atm of CO partial pressure within the temperature range of 900-1050 °C. The reaction rate, the intrinsic carbonation kinetic constant, the characteristic product layer thickness and their dependence on the temperature has been evaluated in the temperature range 900-1000 °C; the activation energy has been found to be 52 kJ mol. Finally, comparison of the calculated conversion-time profiles, obtained from the applied kinetic models, with experimental data revealed a good agreement.
Kinetics of the carbonation reaction of an SrO-Al2O3 composite for thermochemical energy storage
Ammendola Paola;Raganati Federica
;Landi Elena;Natali Murri Annalisa;Miccio Francesco
2021
Abstract
In framework of the thermochemical energy storage (TCES) in concentrating solar power (CSP) applications, great attention is focused on the SrCO/SrO system, which is characterized by remarkably high theoretical volumetric energy density (4 GJ m) and working temperatures (1200 °C). It has been shown that the incorporation of AlO in the SrO/SrCO system can successfully hinder the sintering and agglomeration phenomena, thus improving the performances of the system. Aiming at providing useful information for the design, simulation and scale up of a reactor for the energy storage, besides the multicycle carbonation conversion, the evaluation of the reaction kinetics is crucial. Thus, in this work, the kinetics of the carbonation of a SrO-AlO composite (34%wt of AlO) for TCES-CSP has been investigated for the first time using a two-stage kinetic model. In particular, tests have been performed in a thermogravimetric analyzer at operating conditions relevant for TCES, namely at 1 atm of CO partial pressure within the temperature range of 900-1050 °C. The reaction rate, the intrinsic carbonation kinetic constant, the characteristic product layer thickness and their dependence on the temperature has been evaluated in the temperature range 900-1000 °C; the activation energy has been found to be 52 kJ mol. Finally, comparison of the calculated conversion-time profiles, obtained from the applied kinetic models, with experimental data revealed a good agreement.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1385894721012055-main.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.9 MB
Formato
Adobe PDF
|
4.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Kinetics of the Carbonation Reaction of an SrO-Al2O3 Composite for ThermochemicalPOST PRINT.pdf
accesso aperto
Descrizione: paper
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.42 MB
Formato
Adobe PDF
|
2.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.