-

We present Flood-SHE, a data-driven, statistically-based procedure for the delineation of areas expected to be inundated by river floods. We applied Flood-SHE in the 23 River Basin Authorities (RBAs) in Italy using information on the presence or absence of inundations obtained from existing flood zonings as the dependent variable, and six hydro-morphometric variables computed from a 10x10 m DEM as covariates. We trained 96 models for each RBA using 32 combinations of the hydro-morphometric covariates for the three return periods, for a total of 2208 models, which we validated using 32 model sets for each of the covariate combinations and return periods, for a total of 3072 validation models. In all the RBAs, Flood-SHE delineated accurately potentially inundated areas that matched closely the corresponding flood zonings defined by physically-based hydro-dynamic flood routing and inundation models. Flood-SHE delineated larger to much larger areas as potentially subject of being inundated than the physically-based models, depending on the quality of the flood information. Analysis of the sites with flood human consequences revealed that the new data-driven inundation zones are good predictors of flood risk to the population of Italy. Our experiment confirmed that a small number of hydro-morphometric terrain variables is sufficient to delineate accurate inundation zonings in a variety of physiographical settings, opening to the possibility of using Flood-SHE in other areas. We expect the new data-driven inundation zonings to be useful where flood zonings built on hydrological modelling are not available, and to decide where improved flood hazard zoning is needed.

Data-driven flood hazard zonation of Italy

Ivan Marchesini
Primo
;
Paola Salvati;Mauro Rossi;Marco Donnini;Simone Sterlacchini;Fausto Guzzetti
Ultimo
2021

Abstract

We present Flood-SHE, a data-driven, statistically-based procedure for the delineation of areas expected to be inundated by river floods. We applied Flood-SHE in the 23 River Basin Authorities (RBAs) in Italy using information on the presence or absence of inundations obtained from existing flood zonings as the dependent variable, and six hydro-morphometric variables computed from a 10x10 m DEM as covariates. We trained 96 models for each RBA using 32 combinations of the hydro-morphometric covariates for the three return periods, for a total of 2208 models, which we validated using 32 model sets for each of the covariate combinations and return periods, for a total of 3072 validation models. In all the RBAs, Flood-SHE delineated accurately potentially inundated areas that matched closely the corresponding flood zonings defined by physically-based hydro-dynamic flood routing and inundation models. Flood-SHE delineated larger to much larger areas as potentially subject of being inundated than the physically-based models, depending on the quality of the flood information. Analysis of the sites with flood human consequences revealed that the new data-driven inundation zones are good predictors of flood risk to the population of Italy. Our experiment confirmed that a small number of hydro-morphometric terrain variables is sufficient to delineate accurate inundation zonings in a variety of physiographical settings, opening to the possibility of using Flood-SHE in other areas. We expect the new data-driven inundation zonings to be useful where flood zonings built on hydrological modelling are not available, and to decide where improved flood hazard zoning is needed.
2021
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
-
Inundation
Statistical modelling
Hazard zoning
Hydro-morphometry
File in questo prodotto:
File Dimensione Formato  
prod_454967-doc_175619_reduced.pdf

accesso aperto

Descrizione: Data-driven flood hazard zonation of Italy
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/396924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact