In this paper, we address the probabilistic error quantification of a general class of prediction methods. We consider a given prediction model and show how to obtain, through a sample-based approach, a probabilistic upper bound on the absolute value of the prediction error. The proposed scheme is based on a probabilistic scaling methodology in which the number of required randomized samples is independent of the complexity of the prediction model. The methodology is extended to address the case in which the probabilistic uncertain quantification is required to be valid for every member of a finite family of predictors. We illustrate the results of the paper by means of a numerical example.
Prediction error quantification through probabilistic scaling
Martina Mammarella;Fabrizio Dabbene;
2021
Abstract
In this paper, we address the probabilistic error quantification of a general class of prediction methods. We consider a given prediction model and show how to obtain, through a sample-based approach, a probabilistic upper bound on the absolute value of the prediction error. The proposed scheme is based on a probabilistic scaling methodology in which the number of required randomized samples is independent of the complexity of the prediction model. The methodology is extended to address the case in which the probabilistic uncertain quantification is required to be valid for every member of a finite family of predictors. We illustrate the results of the paper by means of a numerical example.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.