Small tree size represents the main challenge when designing a cost-effective harvesting system for European short-rotation plantations. This challenge is further complicated by the need to obtain 4-m logs for high-end products, which rules out the possibility of deploying whole-tree chipping. Both challenges can be met through mass or multi-tree handling (MTH), which must begin at the time of felling and continue uninterrupted along the whole supply chain. The objective was to: (1) gauge the productivity and the cost of CTL harvesting applied to these plantations; (2) assess log yield and capacity to match dimensional specifications; (3) determine if MTH applied to CTL technology offers a real benefit compared with conventional single-tree handling. The authors conducted a time study using a block design with a two-machine cut-to-length harvesting system (i.e. harvester and forwarder) in single- and multi-tree handling operations on the clear cutting of a hybrid poplar plantation in Poland, as well as we manually measured the produced volumes of the study. Higher productivity (+ 8%) was achieved under the multi-stem handling mode. The MTH system proved capable of containing harvesting costs below EUR 15 per green ton, while fulfilling set timber quality requirements in terms of value recovery and log quality specifications. A new, software-based, MTH system is recommended to be used in short-rotation poplar plantation for logs and biomass harvesting. When the coppicing season is over, the system can be deployed for the conventional thinning operations.

Multi-tree cut-to-length harvesting of short-rotation poplar plantations

Magagnotti N;Spinelli R;
2021

Abstract

Small tree size represents the main challenge when designing a cost-effective harvesting system for European short-rotation plantations. This challenge is further complicated by the need to obtain 4-m logs for high-end products, which rules out the possibility of deploying whole-tree chipping. Both challenges can be met through mass or multi-tree handling (MTH), which must begin at the time of felling and continue uninterrupted along the whole supply chain. The objective was to: (1) gauge the productivity and the cost of CTL harvesting applied to these plantations; (2) assess log yield and capacity to match dimensional specifications; (3) determine if MTH applied to CTL technology offers a real benefit compared with conventional single-tree handling. The authors conducted a time study using a block design with a two-machine cut-to-length harvesting system (i.e. harvester and forwarder) in single- and multi-tree handling operations on the clear cutting of a hybrid poplar plantation in Poland, as well as we manually measured the produced volumes of the study. Higher productivity (+ 8%) was achieved under the multi-stem handling mode. The MTH system proved capable of containing harvesting costs below EUR 15 per green ton, while fulfilling set timber quality requirements in terms of value recovery and log quality specifications. A new, software-based, MTH system is recommended to be used in short-rotation poplar plantation for logs and biomass harvesting. When the coppicing season is over, the system can be deployed for the conventional thinning operations.
2021
Istituto per la BioEconomia - IBE
Multi-tree handling (MTH)
Logging
Felling
Forwarding
Productivity
Cost efciency
File in questo prodotto:
File Dimensione Formato  
prod_454176-doc_174934.pdf

accesso aperto

Descrizione: Multi-tree cut-to-length harvesting of short-rotation poplar plantations
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/397737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 29
social impact