Fake news detection has gained increasing importance among the research community due to the widespread diffusion of fake news through media platforms. Many dataset have been released in the last few years, aiming to assess the performance of fake news detection methods. In this survey, we systematically review twenty-seven popular datasets for fake news detection by providing insights into the characteristics of each dataset and comparative analysis among them. A fake news detection datasets characterization composed of eleven characteristics extracted from the surveyed datasets is provided, along with a set of requirements for comparing and building new datasets. Due to the ongoing interest in this research topic, the results of the analysis are valuable to many researchers to guide the selection or definition of suitable datasets for evaluating their fake news detection methods.

Fake news detection: a survey of evaluation datasets

Arianna D'Ulizia;Maria Chiara Caschera;Fernando Ferri;Patrizia Grifoni
2021

Abstract

Fake news detection has gained increasing importance among the research community due to the widespread diffusion of fake news through media platforms. Many dataset have been released in the last few years, aiming to assess the performance of fake news detection methods. In this survey, we systematically review twenty-seven popular datasets for fake news detection by providing insights into the characteristics of each dataset and comparative analysis among them. A fake news detection datasets characterization composed of eleven characteristics extracted from the surveyed datasets is provided, along with a set of requirements for comparing and building new datasets. Due to the ongoing interest in this research topic, the results of the analysis are valuable to many researchers to guide the selection or definition of suitable datasets for evaluating their fake news detection methods.
2021
Istituto di Ricerche sulla Popolazione e le Politiche Sociali - IRPPS
Fake news detection
Online fake news
Evaluation datasets
File in questo prodotto:
File Dimensione Formato  
prod_454821-doc_175475.pdf

accesso aperto

Descrizione: peerj-cs-518
Tipologia: Versione Editoriale (PDF)
Dimensione 5.9 MB
Formato Adobe PDF
5.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact