Hypotheses: Additives are commonly used to tune macromolecular conformational transitions. Among additives, trehalose is an excellent bioprotectant and among responsive polymers, PNIPAM is the most studied material. Nevertheless, their interaction mechanism so far has only been hinted without direct investigation, and, crucially, never elucidated in comparison to proteins. Detailed insights would help understand to what extent PNIPAM microgels can effectively be used as synthetic biomimetic materials, to reproduce and study, at the colloidal scale, isolated protein behavior and its sensitivity to interactions with specific cosolvents or cosolutes. Experiments: The effect of trehalose on the swelling behavior of PNIPAM microgels was monitored by dynamic light scattering; Raman spectroscopy and molecular dynamics simulations were used to explore changes of solvation and dynamics across the swelling-deswelling transition at the molecular scale. Findings: Strongly hydrated trehalose molecules develop water-mediated interactions with PNIPAM microgels, thereby preserving polymer hydration below and above the transition while drastically inhibiting local motions of the polymer and of its hydration shell. Our study, for the first time, demonstrates that slowdown of dynamics and preferential exclusion are the principal mechanisms governing trehalose effect on PNIPAM microgels, at odds with preferential adsorption of alcohols, but in full analogy with the behavior observed in trehalose-protein systems.
Thermoresponsivity of poly(N-isopropylacrylamide) microgels in water-trehalose solution and its relation to protein behavior
Tavagnacco L;Comez L;Buratti E;Bertoldo M;Zaccarelli E;
2021
Abstract
Hypotheses: Additives are commonly used to tune macromolecular conformational transitions. Among additives, trehalose is an excellent bioprotectant and among responsive polymers, PNIPAM is the most studied material. Nevertheless, their interaction mechanism so far has only been hinted without direct investigation, and, crucially, never elucidated in comparison to proteins. Detailed insights would help understand to what extent PNIPAM microgels can effectively be used as synthetic biomimetic materials, to reproduce and study, at the colloidal scale, isolated protein behavior and its sensitivity to interactions with specific cosolvents or cosolutes. Experiments: The effect of trehalose on the swelling behavior of PNIPAM microgels was monitored by dynamic light scattering; Raman spectroscopy and molecular dynamics simulations were used to explore changes of solvation and dynamics across the swelling-deswelling transition at the molecular scale. Findings: Strongly hydrated trehalose molecules develop water-mediated interactions with PNIPAM microgels, thereby preserving polymer hydration below and above the transition while drastically inhibiting local motions of the polymer and of its hydration shell. Our study, for the first time, demonstrates that slowdown of dynamics and preferential exclusion are the principal mechanisms governing trehalose effect on PNIPAM microgels, at odds with preferential adsorption of alcohols, but in full analogy with the behavior observed in trehalose-protein systems.File | Dimensione | Formato | |
---|---|---|---|
prod_455628-doc_176128.pdf
solo utenti autorizzati
Descrizione: Thermoresponsivity of poly(N-isopropylacrylamide) microgels in water-trehalose solution and its relation to protein behavior
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.99 MB
Formato
Adobe PDF
|
1.99 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
JCISv2.pdf
accesso aperto
Descrizione: Thermoresponsivity of poly(N-isopropylacrylamide) microgels in water-trehalose solution and its relation to protein behavior
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
4.58 MB
Formato
Adobe PDF
|
4.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.