Modern search engine ranking pipelines are commonly based on large machine-learned ensembles of regression trees. We propose LEAR, a novel - learned - technique aimed to reduce the average number of trees traversed by documents to accumulate the scores, thus reducing the overall query response time. LEAR exploits a classifier that predicts whether a document can early exit the ensemble because it is unlikely to be ranked among the final top-k results. The early exit decision occurs at a sentinel point, i.e., after having evaluated a limited number of trees, and the partial scores are exploited to filter out non-promising documents. We evaluate LEAR by deploying it in a production-like setting, adopting a state-of-the-art algorithm for ensembles traversal. We provide a comprehensive experimental evaluation on two public datasets. The experiments show that LEAR has a significant impact on the efficiency of the query processing without hindering its ranking quality. In detail, on a first dataset, LEAR is able to achieve a speedup of 3x without any loss in NDCG@10, while on a second dataset the speedup is larger than 5x with a negligible NDCG@10 loss (< 0.05%).

Learning early exit strategies for additive ranking ensembles

Nardini FM;Perego R;Trani S
2021

Abstract

Modern search engine ranking pipelines are commonly based on large machine-learned ensembles of regression trees. We propose LEAR, a novel - learned - technique aimed to reduce the average number of trees traversed by documents to accumulate the scores, thus reducing the overall query response time. LEAR exploits a classifier that predicts whether a document can early exit the ensemble because it is unlikely to be ranked among the final top-k results. The early exit decision occurs at a sentinel point, i.e., after having evaluated a limited number of trees, and the partial scores are exploited to filter out non-promising documents. We evaluate LEAR by deploying it in a production-like setting, adopting a state-of-the-art algorithm for ensembles traversal. We provide a comprehensive experimental evaluation on two public datasets. The experiments show that LEAR has a significant impact on the efficiency of the query processing without hindering its ranking quality. In detail, on a first dataset, LEAR is able to achieve a speedup of 3x without any loss in NDCG@10, while on a second dataset the speedup is larger than 5x with a negligible NDCG@10 loss (< 0.05%).
2021
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4503-8037-9
Ranking
File in questo prodotto:
File Dimensione Formato  
prod_458025-doc_177889.pdf

solo utenti autorizzati

Descrizione: Learning early exit strategies for additive ranking ensembles
Tipologia: Versione Editoriale (PDF)
Dimensione 962.25 kB
Formato Adobe PDF
962.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact