We are developing gaseous photon detectors for Cherenkov imaging applications in the experiments at the future Electron Ion Collider. CsI, converting photons in the far ultraviolet range, is, so far, the only photoconverter compatible with the operation of gaseous detectors. It is very delicate to handle due to its hygroscopic nature: the absorbed water vapour decomposes the CsI molecule. In addition, its quantum efficiency degrades under ion bombardment. These are the key reasons to quest for novel, less delicate materials for photocathodes adequate for gaseous photon detectors. Layers of hydrogenated nanodiamond particles have recently been proposed as an alternative material and have shown promising characteristics. The performance of nanodiamond photocathodes coupled to thick GEM-based detectors is the objects of our ongoing R&D. The first phase of these studies includes the characterization of thick GEM coated with nanodiamond layers and the robustness of its photoconverting properties with respect to the bombardment by ions from the multiplication process in the gaseous detector. The approach is described in detail as well as all the results obtained so far within these exploratory studies.

Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC

Cicala G;Velardi L;
2020

Abstract

We are developing gaseous photon detectors for Cherenkov imaging applications in the experiments at the future Electron Ion Collider. CsI, converting photons in the far ultraviolet range, is, so far, the only photoconverter compatible with the operation of gaseous detectors. It is very delicate to handle due to its hygroscopic nature: the absorbed water vapour decomposes the CsI molecule. In addition, its quantum efficiency degrades under ion bombardment. These are the key reasons to quest for novel, less delicate materials for photocathodes adequate for gaseous photon detectors. Layers of hydrogenated nanodiamond particles have recently been proposed as an alternative material and have shown promising characteristics. The performance of nanodiamond photocathodes coupled to thick GEM-based detectors is the objects of our ongoing R&D. The first phase of these studies includes the characterization of thick GEM coated with nanodiamond layers and the robustness of its photoconverting properties with respect to the bombardment by ions from the multiplication process in the gaseous detector. The approach is described in detail as well as all the results obtained so far within these exploratory studies.
2020
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
Materials for gaseous detectors
Micropattern gaseous detectors
Photocathodes and their production
Photon detectors for UV
visible and IR photons
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/399701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact